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Mitigation of total body 
irradiation‑induced mortality 
and hematopoietic injury of mice 
by a thrombopoietin mimetic 
(JNJ‑26366821)
Vidya P. Kumar1,4, Gregory P. Holmes‑Hampton1,4, Shukla Biswas1, Sasha Stone1, 
Neel Kamal Sharma1, Bernadette Hritzo1, Mary Guilfoyle2, Gary Eichenbaum2, 
Chandan Guha3 & Sanchita P. Ghosh1*

The threat of a nuclear attack has increased in recent years highlighting the benefit of developing 
additional therapies for the treatment of victims suffering from Acute Radiation Syndrome (ARS). 
In this work, we evaluated the impact of a PEGylated thrombopoietin mimetic peptide, JNJ-
26366821, on the mortality and hematopoietic effects associated with ARS in mice exposed to 
lethal doses of total body irradiation (TBI). JNJ-26366821 was efficacious as a mitigator of mortality 
and thrombocytopenia associated with ARS in both CD2F1 and C57BL/6 mice exposed to TBI from 
a cobalt-60 gamma-ray source. Single administration of doses ranging from 0.3 to 1 mg/kg, given 
4, 8, 12 or 24 h post-TBI (LD70 dose) increased survival by 30–90% as compared to saline control 
treatment. At the conclusion of the 30-day study, significant increases in bone marrow colony forming 
units and megakaryocytes were observed in animals administered JNJ-26366821 compared to those 
administered saline. In addition, enhanced recovery of FLT3-L levels was observed in JNJ-26366821-
treated animals. Probit analysis of survival in the JNJ-26366821- and saline-treated cohorts revealed 
a dose reduction factor of 1.113 and significant increases in survival for up to 6 months following 
irradiation. These results support the potential use of JNJ-26366821 as a medical countermeasure for 
treatment of acute TBI exposure in case of a radiological/nuclear event when administered from 4 to 
24 h post-TBI.

Risk of radiation exposure due to terrorist attacks or nuclear accidents is increasing and it is critical to have 
multiple radiation countermeasures readily available. The extent of injury resulting from exposure to ionizing 
radiation is dependent on the extent of exposure, with the hematopoietic system being the most susceptible1. 
Development of radiation countermeasures for treatment of Hematopoietic Acute Radiation Syndrome (H-ARS) 
has focused on drugs that promote hematopoietic recovery and more specifically, agents that stimulate produc-
tion of white cells and platelets following Total Body Irradiation (TBI)2,3.

To date, the FDA has approved 4 radiation countermeasures for the mitigation of H-ARS, each serving to 
stimulate white cells or platelets: Neupogen4, Neulasta5, Leukine6, and Nplate7. Neupogen (filgrastim) and Neu-
lasta (PEGylated filgrastim) were approved in 2015 and are both recombinant forms of the cytokine, Granulocyte-
colony stimulating factor (G-CSF). Neupogen (filgrastim) requires daily dosing until neutrophil counts are 
above 1000/ml for 3 consecutive readings and Neulasta (PEGylated filgrastim) requires two doses administered 
a week apart. Both Neupogen and Neulasta mitigate H-ARS by facilitating bone marrow recovery (especially 
neutrophil recovery) which aids in maintaining immune function and capacity for fighting infections. Leukine 
was approved in 2018 and is a recombinant form of the Granulocyte–macrophage colony-stimulating factor 
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(GM-CSF) cytokine. Leukine promotes proliferation of various cell types including macrophages and eosinophils 
and requires daily dosing. Nplate (romiplostim) is a thrombopoietin (TPO) mimetic IgG conjugated peptide 
with no sequence homology to endogenous TPO that stimulates platelet production. It was approved in 2021 
to treat ARS based on data showing enhanced survival and platelet recovery in pre-clinical models of ARS8,9.

Romiplostim is one of the four TPO mimetics that have been developed and approved for thrombocytopenia-
related indications10,11 and is the only one approved for ARS treatment. Interest in evaluating TPO mimetics 
for treatment of ARS was spurred by findings that recombinant human TPO enhanced survival and platelet 
recovery12. However, generation of autoantibodies to endogenous TPO was reported in some patients treated 
with recombinant human TPO13, highlighting the need for TPO mimetics. JNJ-26366821 (TPOm) is a novel TPO 
mimetic that, like the approved TPO mimetics, has no sequence homology to endogenous TPO, mitigating the 
risk for generation of autoantibodies to endogenous TPO and subsequent thrombocytopenia. Like romiplostim, 
JNJ-26366821 is a synthetic peptide that can be administered subcutaneously or intravenously, whereas the other 
TPO mimetics are orally administered small molecules. JNJ-26366821 has a similar but distinct peptide sequence 
to romiplostim and is PEGylated to extend its half-life whereas romiplostim is IgG conjugated14. JNJ-26366821 
has been evaluated in chronic toxicity studies15,16, in a Phase 1 study to determine safety and tolerability in healthy 
volunteers16 and a Phase 1b study in cancer patients (internal results of Janssen). Given the unique properties 
of JNJ-26366821 and the need for multiple radiation countermeasures, it was of interest to evaluate the efficacy 
and safety of JNJ-26366821 in pre-clinical models of H-ARS.

Here, we present the effects of JNJ-26366821 on survival and hematopoietic recovery in mouse models of 
ARS when administered between four and twenty-four hours post-TBI. The results support future development 
of JNJ-26366821 as radiation mitigator.

Results
JNJ‑26366821 administered 4–24 h post‑TBI increases survival.  Prior to TBI studies, TPOm (sin-
gle dose of 3 mg/kg) was tested for safety and tolerability in CD2F1 male mice and was found to be safe at this 
dose with no abnormal clinical signs of toxicity and the absence of pathological findings on gross necropsy. 
JNJ-26366821 (0.3 mg/kg) or saline were administered 4 h post-TBI at 9.35 Gy (LD70/30) and monitored for 
survival. At the conclusion of the study, 88% of animals administered JNJ-26366821 survived whereas 35% of 
animals administered saline survived (Fig.  1A). Comparing the survival curves using Log-rank test demon-
strated a significant difference (p = 0.0002) between the saline and JNJ-26366821 curves; comparing the survival 
percentage in both groups at day 30 with a Fisher’s exact test (88% vs 35%) was also statistically significant 
(p = 0.0001). Additional animals were administered either JNJ-26366821 (0.3 mg/kg or 1.0 mg/kg) or saline 24 h 
post-TBI; survival in animals administered 1.0 mg/kg JNJ-2636682, 0.3 mg/kg JNJ-26366821, and saline was 
79%, 71%, and 29%, respectively. (Fig. 1B).

Log-rank test comparison of the survival curves demonstrated a significant increase in survival in both JNJ-
26366821-treated groups compared to the saline-treated group (1.0 mg/kg JNJ-26366821 vs saline, p = 0.0008 
and 0.3 mg/kg JNJ-26366821 vs saline, p = 0.0122); survival in JNJ-26366821 groups was not significantly dif-
ferent (p = 0.4787). Comparison of survival outcome at day 30 (Fisher’s exact test), demonstrated significantly 
increased survival in both JNJ-26366821-treated groups over saline (1.0 mg/kg JNJ-26366821 (79%) vs saline 
(29%), p = 0.0012 and 0.3 mg/kg JNJ-26366821 (71%) vs saline (29%), p = 0.0087); and no significant difference 
in survival outcome between the two JNJ-26366821-treated groups (79% vs 71%, p = 0.7400). Additionally, sur-
vival following multiple doses of JNJ-26366821 (a 1, 2, or 3 dose regimen administered once daily) was assessed 
however, no additional survival benefit was observed in animals administered more than a single dose of JNJ-
26366821 (Supplemental Fig. 1).

Figure 1.   Survival of CD2F1 mice following total body irradiation with 9.35 Gy. A single dose of JNJ-
26366821 at 0.3 mg/kg (■) or saline as a vehicle (dashed line) was administered 4 h post-TBI (A) (Log-rank 
test p = 0.0002) , a single dose of JNJ-26366821 either at 0.3 mg/kg (■) or at 1.0 mg/kg (Δ) or saline as a 
vehicle (dashed line) was administered 24 h post-TBI (B) (Log-rank test Saline vs. JNJ-26366821 (0.3 mg/kg) 
p = 0.0122, Saline vs. JNJ26366821 (1.0 mg/kg) p = 0.0008, JNJ-26366821 (0.3 mg/kg) vs. JNJ-26366821 (1.0 mg/
kg) p = 0.4787. Kaplan–Meier survival curves were plotted using GraphPad software; n = 24 mice per group and 
trend in survival is compared between vehicle and drug-treated groups. Figures were plotted using GraphPad 
Prism 9 software V9.0.2; www.​graph​pad.​com.

http://www.graphpad.com
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JNJ‑26366821 dose‑dependently enhances survival post‑TBI.  Male CD2F1 mice were irradiated at 
9.75 Gy and administered saline or JNJ-26366821 at various concentrations (0.1, 0.3, 1.0, and 3.0 mg/kg). The 
highest survival was observed in animals administered 1.0 mg/kg JNJ-26366821 (88%), followed by 63%, 54%, 
42%, and 21% survival in animals administered 0.3 mg/kg JNJ-26366821, 3.0 mg/kg JNJ-26366821, 0.1 mg/kg 
JNJ-26366821, and saline, respectively (Fig. 2A). Log-rank comparison of the survival curves show statistical 
differences between treatment with 0.3 mg/kg and 1.0 mg/kg JNJ-26366821 (p = 0.0106 and p < 0.0001, respec-
tively); survival in animals treated with 0.1 mg/kg and 3.0 mg/kg JNJ-26366821 was not statistically different 
than that in saline-treated animals (Log-rank p = 0.2515 and p = 0.0734, respectively). When comparing the sur-
vival curves (Log-rank test) for the various JNJ-26366821-treated groups, survival in the groups that received 
0.1 mg/kg and 1.0 mg/kg were statistically different (p = 0.0009), whereas survival curves for animals adminis-
tered 0.1 and 0.3 or 0.1 and 3.0 mg/kg were not statistically different (p = 0.1599 and p = 0.3606, respectively). 
Survival curves for animals that received 0.3 and 1.0 mg/kg were statistically different (p = 0.0451) whereas sur-
vival curves from animals receiving 0.3 and 3.0 mg/kg were not (p = 0.5674). Finally, survival curves for animals 
administered 1.0 mg/kg were statistically different from those administered 3.0 mg/kg (p = 0.0096). All log-rank 
statistical analyses are summarized in Table  1 (top set of values). In total, the group that was administered 
1.0 mg/kg JNJ-26366821 was the only group was statistically different from all other groups.

Figure 2.   Time and dose optimization of JNJ-26366821 administration. (A) Optimization of JNJ-26366821 
dose to improve survival of lethally irradiated CD2F1 mice when administered SC 4 h after 9.75 Gy TBI (n = 24/
group). Survival curves shown here are saline as the vehicle (●) and JNJ-26366821 at doses of 0.1 mg/kg (■), 
0.3 mg/kg (▲), 1.0 mg/kg (▼), and 3.0 mg/kg (♦), Percent survival on day 30 post-TBI is shown at the end of 
each curve. Kaplan–Meier survival curves were plotted using GraphPad software; n = 24 mice per group and 
trend in survival is compared between vehicle and drug-treated groups (Log-rank test p = 0.0001–0.2515). (B) 
Optimization of JNJ-26366821 dose to improve survival of lethally irradiated CD2F1 mice when administered 
SC 24 h after 9.35 Gy TBI (n = 24/group). Survival curves shown here are saline as the vehicle (○) and JNJ-
26366821 doses 0.1 mg/kg (●), 0.3 mg/kg (■), 1.0 mg/kg (Δ), 2.0 mg/kg (▼) and 3.0 mg/kg (□). Percent 
survival on day 30 post-TBI is shown at the end of each curve. Kaplan–Meier survival curves were plotted using 
GraphPad software; n = 24 mice per group and trend in survival is compared between vehicle and drug-treated 
groups. (C) Effect of TPOm administration SC at 4, 8 and 12 h post-TBI (9.75 Gy, n = 24/group) in CD2F1 
mice. Survival curves shown here are saline as the vehicle at 4 h (○), 8 h (Δ), 12 h (□) and JNJ-26366821 at 4 h 
(●), 8 h (▲) and 12 h (■) post-TBI. Percent survival values on day 30 post-TBI are shown at the end of each 
curve. Kaplan–Meier survival curves were plotted using GraphPad software; n = 20 mice per group and trend in 
survival is compared between vehicle and drug-treated groups (Log-rank test p = 0.0001–0.0019). Figures were 
plotted using GraphPad Prism 9 software V9.0.2; www.​graph​pad.​com.

Table 1.   Comparison of Log-Rank (top) and Fisher’s exact test (bottom) statistical analyses for Fig. 2A. Above 
the diagonal of non-comparison where groups would be compared with themselves are significance values 
for log-rank analysis of the survival curves. Below the diagonal are significance values for Fisher’s exact test 
conducted based on surviving proportions on day 30.

Group Saline
0.1 mg/kg JNJ-
26366821

0.3 mg/kg JNJ-
26366821

1.0 mg/kg 
JNJ26366821

3.0 mg/kg JNJ-
26366821

Saline – p = 0.2515 p = 0.0106 p < 0.0001 p = 0.0734

0.1 mg/kg JNJ-
26366821 p = 0.2124 – p = 0.1599 p = 0.0009 p = 0.3606

0.3 mg/kg JNJ-
26366821 p = 0.0077 p = 0.2476 – p = 0.0451 p = 0.5674

1.0 mg/kg JNJ26366821 p < 0.0001 p = 0.0020 p = 0.0933 – p = 0.0096

3.0 mg/kg JNJ-
26366821 p = 0.0355 p = 0.5639 p = 0.7702 p = 0.0243 –

http://www.graphpad.com
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Comparing the 30-day survival (Fisher’s exact test) of animals administered saline or JNJ-26366821, survival 
was significantly increased in animals administered 0.3 mg/kg, 1.0 mg/kg, and 3.0 mg/kg JNJ-26366821 over 
the saline control (p = 0.0077, p < 0.0001, and p = 0.0355 respectively) no statistical difference was observed in 
the survival of animals administered 0.1 mg/kg JNJ-26366821 as compared to saline (p = 0.2124). Comparison 
of 30-day survival (Fisher’s exact test) in the various JNJ-26366821 dose groups showed survival for animals 
administered 0.1 mg/kg was lower than animals administered 1.0 mg/kg JNJ-26366821 (p = 0.0020), whereas 
survival for animals administered 0.1 and 0.3 or 0.1 and 3.0 mg/kg JNJ-26366821 was not statistically different 
from one another (p = 0.2476 and p = 0.5639, respectively). Survival for animals that received 0.3 and 1.0 mg/kg 
or 0.3 and 3.0 mg/kg were not statistically different from one another (p = 0.0933 and p = 0.7702, respectively). 
Finally, survival curves for animals administered 1.0 mg/kg were statistically different from those administered 
3.0 mg/kg (p = 0.0243).

Similar analyses were conducted for male CD2F1 mice administered saline or JNJ-26366821 (0.1, 0.3, 1.0, 
2.0, and 3.0 mg/kg) 24 h after TBI at 9.35 Gy. The highest survival was observed in animals administered 1.0 mg/
kg JNJ-26366821 (63%), followed 58%, 50%, 46%, and 33% survival in animals administered 0.1 and 0.3 mg/kg 
JNJ-26366821, 2.0 mg/kg JNJ-26366821, 3.0 mg/kg JNJ-26366821 and saline, respectively (Fig. 2B). These data 
indicated the optimal JNJ-26366821 dose was 1.0 mg/kg however the modest separation in survival between 
saline and the various doses of JNJ-26366821 did not result in statistical significance. Comparing the groups 
administered saline and 1.0 mg/kg JNJ-26366821 (lowest and highest survival, respectively), the Log-rank test 
(p = 0.1402) and Fisher’s exact test at day 30 (p = 0.0820) were the closest to statistical significance.

JNJ‑26366821 enhances survival up to 24 h post‑TBI.  To evaluate the impact of time of administra-
tion at the maximally effective dose of 1.0 mg/kg JNJ-26366821, male CD2F1 mice were irradiated at 9.75 Gy 
and administered JNJ-26366821 or saline at either 4, 8, or 12 (Fig. 2C) or 24 (Fig. 1B) hours post-TBI. Survival 
in animals administered JNJ-26366821 or saline 4 h post-TBI was 80% and 20% respectively; a log-rank test 
comparing the curves showed significant difference (p = 0.0006) and a Fisher’s exact test comparing survival at 
day 30 demonstrated a significant increase in survival in animals administered JNJ-26366821 (p = 0.0004). For 
animals administered JNJ-26366821 or saline 8 h post-TBI, survival was 90% and 10% respectively; log-rank 
comparison of the curves revealed significant difference (p < 0.0001) and a Fisher’s exact test comparing survival 
at day 30 demonstrated a significant increase in survival in animals administered JNJ-26366821 (p < 0.0001). 
Survival in animals administered JNJ-26366821 or saline 12  h post-TBI was 70% and 20% respectively; the 
curves were significantly different as shown by log-rank test (p = 0.0019) and a Fisher’s exact test comparing 
survival at day 30 showed a significant increase in survival in animals administered JNJ-26366821 (p = 0.0036). 
Comparison of survival in the groups administered JNJ-26366821 at different time points did not reveal statisti-
cally significant differences, + 4 h vs + 8 h (Log-rank test: p = 0.6392, 30 day Fisher’s exact test: p = 0.6614), + 4 h 
vs + 12  h (Log-rank test: p = 0.5074, 30  day Fisher’s exact test: p = 0.7164), and + 8  h vs + 12  h (Log-rank test: 
p = 0.1404, 30 day Fisher’s exact test: p = 0.2351). Similarly, no significant differences were observed amongst the 
groups administered saline.

JNJ‑26366821 administered 24  h post‑TBI enhances recovery of neutrophils, platelets, and 
bone marrow progenitor cells.  A 1.0 mg/kg dose of JNJ-26366821 or saline was administered to CD2F1 
mice 24 h post-TBI at a nonlethal dose (7 Gy). Blood was collected at various time points in the 30-day study; blood 
was also collected at the same time points from an additional cohort of animals that were not exposed to irradia-
tion but received 1.0 mg/kg JNJ-26366821 or saline. Amongst the non-irradiated animals (blue traces, Fig. 3A), 
JNJ-26366821 administration was sufficient to increase neutrophil counts on day 3 (2.931 ± 1.376 × 103cells/μl 
of blood for animals administered JNJ-26366821 vs. 0.553 ± 0.348 × 103cells/μl of blood for animals adminis-
tered saline, p = 0.0001). Amongst irradiated animals (green traces, Fig. 3A), neutrophil counts were elevated in 
animals administered JNJ-26366821 compared to those administered saline 24 h post-TBI on days 10 and 14 
(day 10: 0.094 ± 0.040 × 103cells/μl of blood for animals administered JNJ-26366821 vs. 0.045 ± 0.024 × 103cells/
μl of blood for animals administered saline, p = 0.0040 and day14: 0.477 ± 0.223 × 103cells/μl of blood for animals 
administered JNJ-26366821 vs. 0.137 ± 0.085 × 103cells/μl of blood for animals administered saline, p = 0.0003).

In the non-irradiated animals (blue traces, Fig. 3B), JNJ-26366821 elevated platelet counts compared to saline 
on days 3, 7, and 10 (day 3: 1201 ± 269 × 103cells/μl vs 422 ± 300 × 103cells/μl, p < 0.0001, day 7: 1201 ± 269 × 103cells/
μl vs 422 ± 300 × 103cells/μl, p = 0.0002, and day 10: 1201 ± 269 × 103cells/μl vs 422 ± 300 × 103cells/μl, p < 0.0001). 
In the irradiated animals (green traces, Fig. 3B), JNJ-26366821 accelerated recovery of platelet counts com-
pared to saline on days 10 and 14 (day 10: 176 ± 76 × 103cells/μl vs 41 ± 10 × 103cells/μl, p < 0.0001 and day 14: 
478 ± 113 × 103cells/μl vs 106 ± 40 × 103cells/μl, p < 0.0001). Taken together, these results demonstrate an acceler-
ated recovery of these cell types in animals administered 1.0 mg/kg JNJ-26366821 24 h post-TBI. Additional cell 
types were also analyzed including white blood cells, monocytes, and lymphocytes (Supplemental Figs. 2A–C). 
These measurements showed these three cell types were elevated in non-irradiated animals administered JNJ-
26366821 compared to those administered saline on day 3 and all three cell types were elevated in irradiated 
animals administered JNJ-26366821 compared to those administered saline on day 14. Red blood cells were also 
analyzed (Supplemental Fig. 2D) however there were no statistically significant changes on any days.

At the conclusion of the 30-day study, bone marrow was collected from the same animals and assayed for 
colony forming units (Fig. 3C). Total bone marrow colony forming units (CFU-GM, CFU-GEMM, CFU-E, and 
BFU-E) in the non-irradiated animals were elevated in animals administered JNJ-26366821 (1.0 mg/kg) com-
pared to those administered saline (30.3 ± 5.3 colonies vs 15.0 ± 8.2 colonies, p = 0.0440). Similarly, bone marrow 
colony forming units in the irradiated animals were elevated in animals administered JNJ-26366821 compared 
to those administered saline (41.5 ± 7.3 colonies vs 12.5 ± 7.2 colonies, p = 0.0010).
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JNJ‑26366821 enhances survival and hematopoietic recovery in an additional mouse 
strain.  The increased survival efficacy of JNJ-26366821 treatment in irradiated CD2F1 mice was confirmed 
using the C57BL/6 strain. C57BL/6 male mice were exposed to 8.0 Gy (TBI) and administered 1.0 mg/kg JNJ-
26366821 24 h post-TBI (Fig. 4A). Survival in animals administered JNJ-26366821 was 83% whereas survival 
in the saline-treated animals was 13%; a log-rank test confirmed the survival curves were statistically different 
from one another (p < 0.0001) and a Fisher’s exact test revealed survival was statistically higher in the animals 
administered JNJ-26366821 (p < 0.0001).

At the conclusion of the 30-day study, blood, femoral bone marrow, and sterna were collected from C57BL/6 
animals in the survival study (Fig. 4A) which included those administered either saline or 1.0 mg/kg JNJ-
26366821 24 h post-TBI at 8.0 Gy as well as age matched, non-irradiated naïve animals. Complete blood 
cell counts were assessed in whole blood (Fig. 4B). White blood cells counts were highest in naïve animals 
(10.2 ± 2.3 × 103 cells/μl) and were significantly higher in the naïve group than in either irradiated group (saline 
0.72 ± 0.38 × 103 cells/μl, p = 0.0164 and JNJ-26366821 1.8 ± 1.0 × 103 cells/μl, p = 0.0042); there was no statisti-
cal difference between the counts in the irradiated groups (p = 0.1553). Neutrophil counts were also highest in 
naïve animals (0.95 ± 0.36 × 103 cells/μl) and higher in the naïve group than either irradiated group, although 
not significantly (saline 0.303 ± 0.291 × 103 cells/μL, p = 0.0707 and JNJ-26366821 0.723 ± 0.224 × 103 cells/μl, 
p = 0.3955). Additionally, the counts in the irradiated groups were not statistically different from one another 
(p = 0.1188). Lymphocytes counts were highest in naïve animals (9.0 ± 1.8 × 103 cells/μl) and significantly higher 
in the naïve group than either irradiated group (saline 0.33 ± 0.04 × 103 cells/μl, p = 0.0148 and JNJ-26366821 
0.72 ± 0.22 × 103 cells/μl, p = 0.0023); the counts in the irradiated groups were not statistically different from one 
another (p = 0.5157). For red blood cells, counts were not statistically higher in naïve animals (10.6 ± 0.3 × 106 
cells/μl) as compared to animals administered saline (5.2 ± 2.5 × 106 cells/μl, p = 0.0652) however naïve counts 
were higher than counts in animals administered JNJ-26366821 (8.3 ± 0.7 × 106 cells/μl, p = 0.0058); no significant 
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Figure 3.   Recovery of peripheral blood cells (neutrophils (NEU) and platelets (PLT)) and bone marrow colony 
forming units. (A) & (B) Blood cell counts for days 0 to 30: Saline or JNJ-26366821 at 1 mg/kg was administered 
24 h post-irradiation. Day 0 represents 2 h post-irradiation. Non-irradiated mice treated with saline (○) and 
JNJ-26366821 (●) and irradiated (7 Gy) mice treated with saline (□) and JNJ-26366821 (■). Data represented 
are mean ± standard error of the mean (SEM) for n = 10 mice. Significant difference (p < 0.001–0.0125) between 
TPOm treated and saline treated irradiated groups by ANOVA is indicated with an asterisk (*). Some data 
points in the figure do not have error bars that are visible because they are smaller than symbols. (C) Bone 
Marrow colony forming units for animals administered Saline or JNJ-26366821 (1 mg/kg) both 24 h after 
irradiation (7 Gy) and in non-irradiated animals (0 Gy) Significant difference *p = 0.04, ***p = 0.0010. Figures 
were plotted using GraphPad Prism 9 software V9.0.2; www.​graph​pad.​com.
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Figure 4.   (A) Survival in C57BL/6 male mice following 8.0 Gy total body irradiation (TBI). A single dose 
of JNJ-26366821 at 1 mg/kg (■) or saline as a vehicle (□) was administered 24 h post-TBI to C57BL/6 male 
mice. Kaplan–Meier survival curves were plotted using GraphPad software; n = 24 mice per group and trend 
in survival is compared between vehicle and drug-treated groups (Log-rank test p < 0.0001). Percent survival 
on day 30 post-TBI is shown at the end of each curve. (B–E) The non-irradiated naïve group was compared 
with the irradiated groups (saline and JNJ-26366821). (B) Peripheral blood cell counts on day 30 post-TBI 
(8 Gy). White blood cells (WBC), neutrophils (NEU), lymphocytes (LYM), red blood cells (RBC) and platelets 
(PLT) were measured. (C) Recovery of femoral bone marrow was estimated by Colony forming Unit assay. 
On day 30 post-TBI (8 Gy), the JNJ-26366821 group had significant recovery (p = 0.01) compared to saline 
group. (D) Serum levels of FLT3-L on day 30 post-TBI (8 Gy) were measured by ELISA showing recovery 
by JNJ-26366821 treatment. Data represented are mean ± standard error of the mean (SEM) for n = 3 mice. 
(E) Recovery of cellularity of sternal bone marrow was determined on day 30 post-TBI (8 Gy). The number 
of megakaryocytes were counted in all three groups. The JNJ-26366821 group showed significant recovery 
(p < 0.05) compared to saline group. Significant difference (p < 0.001–0.05) by t-test is indicated with an asterisk 
(*). (F) Representative sternal bone marrow sections are shown for naïve, irradiated saline and JNJ-26366821 
groups. Green arrows indicate megakaryocytes. Figures were plotted using GraphPad Prism 9 software V9.0.2; 
www.​graph​pad.​com.

http://www.graphpad.com
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difference was observed between counts in the irradiated groups (p = 0.1080). Finally, the highest platelet counts 
were observed in naïve animals (1364 ± 170 × 103 cells/μl) and counts in naïve group were significantly higher 
than counts in either irradiated group (saline 209 ± 86 × 103 cells/μl, p = 0.0020 and JNJ-26366821 463 ± 189 × 103 
cells/μl, p = 0.0036); the counts in irradiated groups were not statistically different from one another (p = 0.1011). 
For all cell type counts, the prevailing trend was naïve > JNJ-26366821 > saline.

Analysis of the total colony forming units (CFU-GM, CFU-GEMM, CFU-E, and BFU-E) in the bone mar-
row of these animals (Fig. 4C) demonstrated highest counts in naïve animals (20.5 ± 3.1) that were significantly 
elevated relative to animals administered saline (0.25 ± 0.50, p = 0.0006) or JNJ-26366821 (7.8 ± 2.6, p = 0.0150). 
CFU counts were also higher in animals administered JNJ-26366821 over those in animals administered saline 
(p = 0.0109). Similarly, circulating FLT3-L, as assessed by ELISA in serum (Fig. 4D), was significantly higher 
in the saline (4065 ± 1800 pg/ml) group as compared to both the naïve group (368 ± 21 pg/ml, p = 0.0236) and 
JNJ-26366821 group (1114 ± 191 pg/ml, p = 0.0476); FLT3-L levels were elevated in animals administered JNJ-
26366821 as compared to naïve levels (p = 0.0025). Finally, megakaryocytes counts (Fig. 4E) in H&E stained 
sternum (Fig. 4F) were highest in naïve animals (41.0 ± 10.6) and were significantly elevated relative to those 
in animals administered saline (10.0 ± 6.9, p = 0.0132) but not those administered JNJ-26366821 (25.7 ± 6.4, 
p = 0.0986). Additionally, counts were higher in animals administered JNJ-26366821 than animals administered 
saline (p = 0.0454).

JNJ‑26366821 has a favorable dose reduction factor and enhances long term survival of 
C57BL/6 male mice.  Male C57BL/6 mice were administered saline or JNJ-26366821 (1.0 mg/kg) 24 h after 
TBI at various radiation doses to determine the dose reduction factor (Fig. 5A). By plotting survival for the 
various radiation dose groups treated with either saline or JNJ-26366821, the dose of radiation correlating to 
50% lethality over 30 days (LD50/30) was determined by probit analysis. For animals administered saline, the 
LD50/30 dose was 7.78 Gy (95% confidence interval: 7.65–7.90 Gy) and for animals administered JNJ-26366821 
the LD50/30 dose was 8.65 Gy (95% confidence interval: 8.52–8.79 Gy). In conjunction, these values indicated a 
dose reduction factor of 1.113 (95% confidence interval: 1.063–1.197). From this study, the survival of animals 
irradiated at 8.0 and 8.5 Gy was monitored for 6 months (Fig. 5B and C, respectively). Analysis of the survival 
curves for animals irradiated at 8.0 Gy indicated the curves were significantly different between saline and JNJ-
2636682-treated groups as determined by log-rank test (p < 0.0001) and that survival was significantly higher 
at 6 months in animals administered JNJ-26366821 compared to those administered saline (94.7% vs 14.3%, 
p < 0.0001). Analysis of the survival curves for animals irradiated at 8.5 Gy indicated the curves were significantly 
different between saline and JNJ-2636682-treated groups as determined by log-rank test (p = 0.0003) and that 
survival was significantly higher at 6 months in animals administered JNJ-26366821 compared to those admin-
istered saline (52.6% vs 0%, p < 0.0001).

Discussion
Based on its favorable safety and tolerability profile in animals15 and humans16, we evaluated the potential of 
JNJ-26366821 to enhance survival and hematopoietic recovery in pre-clinical mouse models of H-ARS. A single 
dose of TPOm administered either 4, 8, 12, or 24 h post-TBI enhanced 30-day survival significantly. In contrast, a 
single dose of recombinant human TPO (rhTPO) administered either 2 h before or 2 h after TBI increased 30-day 
survival however, no efficacy was observed when administration was delayed to 24 h post-TBI17. In addition, 
JNJ-26366821 is effective in multiple strains of mice, suggesting its use in diverse populations. Multiple dosing 
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Figure 5.   Dose reduction factor and long term survival in C57BL/6 male mice. (A) DRF analysis of animals 
administered JNJ-26366821 at 1 mg/kg (■) or saline as a vehicle (□) 24 h post-TBI. Probit analysis was 
performed using IBM SPSS statistical analysis software and estimated survival was plotted as dashed lines 
(Saline) or Solid lines (TPOm). LD50/30 values were determined to be 7.78 Gy and 8.65 Gy for Saline and JNJ-
26366821, respectively yielding a DRF value of 1.113. N = 24 mice per group. (B) 30 day and 6 month survival 
data for animals administered Saline (□) or JNJ-26366821 (■) 24 h after irradiation at 8.0 Gy. Kaplan–Meier 
survival curves were plotted using GraphPad software; n = 19–22 mice per group and the trend in survival 
was compared between vehicle and drug-treated groups (Log-rank test p < 0.0001). (C) 30 day and 6 month 
survival data for animals administered Saline (□) or JNJ-26366821 (■) 24 h after irradiation at 8.5 Gy. Kaplan–
Meier survival curves were plotted using GraphPad software; n = 19–24 mice per group and trend in survival 
is compared between vehicle and drug-treated groups (Log-rank test p = 0.0003). Figures were plotted using 
GraphPad Prism 9 software V9.0.2; www.​graph​pad.​com.
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with JNJ-26366821 in our irradiated mouse model did not show additional benefit over a single administration 
24 h post-TBI.

It is known that radiation-induced neutropenia and thrombocytopenia contribute significantly to lethality 
as a result of damage to the progenitor cells in the bone marrow18–20. To test the hypothesis that JNJ-26366821 
increases thrombopoiesis in irradiated animals, which may partly contribute to survival benefit, we analyzed 
circulation peripheral blood cells in non-lethally irradiated (7 Gy) mice at 8 time points throughout the 30-day 
period following irradiation. This dose of radiation in the CD2F1 strain has been shown to induce severe bone 
marrow myelosuppression without associated mortality21. Since blood was collected through submandibular vein 
(only 20 µl) without sacrificing the animals, this model allows for  multiple sampling times with surviving irradi-
ated controls. The increase in circulating platelets by JNJ-26366821 supports our hypothesis that improvement 
in survival after JNJ-26366821 administration may be partly due to the thrombopoietic nature of the drug. The 
increased neutrophil counts observed after JNJ-26366821 administration may be due to stem cell mobilization 
into peripheral blood. Since JNJ-26366821 is shown to function by interaction through cMpl receptor, the drug’s 
ability to rescue mice from radiation-induced lethality could be attributed to stimulation of bone marrow to pro-
mote faster recovery of progenitor cells22–24. In addition, the effect of JNJ-26366821 in protection of vasculature 
integrity may have also contributed to the survival benefit25.

There are data showing that patients who switched between romiplostim or the FDA approved TPO mimetic 
eltrombopag, either due to lack of efficacy or for other reasons such as adverse side effects, had a significant 
clinical benefit from the second drug compared to the one that was taken initially9,26–30. These results support the 
potential value of developing additional novel TPO agonists, even though Romiplostim and Eltromboag have 
already been approved for use in humans.

Conclusion.  In conclusion, the current study reports the first evaluations of JNJ-26366821 as a radiation 
mitigator in mice. The results demonstrate a single dose of JNJ-26366821 provides a significant survival benefit 
in lethally irradiated mice, with a window of protection from 4 to 24 h post-TBI and potentially beyond. Admin-
istration of JNJ-26366821 also mitigates platelet loss and enhances the rate of platelet and neutrophil recovery in 
CD2F1 mice. Confirmation of efficacy was conducted in male C57BL/6 male mice as seen by the observation of 
trends towards increased recovery of peripheral blood cell counts at the conclusion of the 30-day study, signifi-
cant increases in colony forming units and megakaryocytes in animals administered JNJ-26366821 compared to 
those administered saline, and recovery of FLT3-L levels in animals administered JNJ-26366821. Probit analysis 
of survival in animals administered JNJ-26366821 or saline revealed a dose reduction factor of 1.113 and animals 
exposed to lethal radiation doses showed significant increases in survival up to 6  months following irradia-
tion and subsequent administration of JNJ-26366821 compared to animals administered saline after irradiation. 
Taken together, these results demonstrate increased survival and recovery with JNJ-26366821-treatment fol-
lowing exposure to ionizing radiation highlighting the promise of JNJ-26366821 as a radiation countermeasure.

Materials and methods
Animals.  Male CD2F1 mice (10–11 weeks old) were purchased from Envigo (Indianapolis, Indiana) and 
male C57BL/6 mice (10–11 weeks old) were purchased from Jackson Laboratories (Bar Harbor, ME). The mice 
were housed in the Armed Forces Radiobiology Research Institute’s (AFRRI) vivarium (accredited by the Asso-
ciation for Assessment and Accreditation of Laboratory Animal Care-International). Experimental animals were 
identified by tail tattoo and housed 4 per box in sterile polycarbonate boxes with filter covers (Microisolator, 
Lab Products Inc., Seaford, DE) with autoclaved hardwood chip bedding. The animals received Harlan Teklad 
Rodent Diet 8604 and acidified water (pH 2.5–3.0) ad libitum and were acclimatized for 1–2 weeks prior to the 
start of each study. The animal rooms were maintained at 21 ± 2 °C and 50 ± 10% relative humidity with 10–15 
cycles of fresh air hourly and a 12:12 h light:dark cycle. All procedures pertaining to animals were reviewed and 
approved by the AFRRI Institutional Animal Care and Use Committee (IACUC) using the principles outlined 
in the National Research Council’s Guide for the Care and Use of Laboratory Animals and performed in accord-
ance with relevant guidelines and regulations. Animal studies were conducted in compliance with ARRIVE 
guidelines.

Drug and drug preparation.  JNJ-26366821 is a novel PEGylated TPO mimetic peptide developed by Jans-
sen Research & Development, LLC. (Raritan, NJ). JNJ-26366821 consists of two identical 14 amino acid peptide 
chains of 3,295 Daltons connected by a lysine residue and linked at each N-terminal to a polyethylene glycol 
(PEG) chain of 20,000 Daltons. JNJ-26366821 was supplied to AFRRI in a powder form and was formulated in 
normal sterile saline (0.9% NaCl) before use and protected from light. Either drug or its vehicle was injected 
subcutaneously (SC) at the nape of the neck, post-TBI at the time indicated for each study.

Total body irradiation (TBI) studies.  Since clinical trials in which humans are exposed to lethal doses of 
TBI cannot ethically be conducted, the approval process for radiation countermeasures is governed by guidance 
issued by the FDA known as the Animal Rule31. Under this guidance, pre-clinical data in one or more species 
along with safety and dosing data in humans is used to support the approval of drugs for use in this indication. 
The mouse is an accepted model for development of radiation countermeasures and it was therefore used to 
evaluate JNJ-26366821.

Mice were irradiated bilaterally at an estimated dose rate of ~ 0.6 Gy/min in the Cobalt-60 γ-irradiation facil-
ity at AFRRI (Bethesda, MD). Animals were placed in well-ventilated plexiglass chambers made specifically for 
irradiating mice. An alanine/Electron Spin Resonance (ESR) dosimetry system (American Society for Testing 
and Material Standard E 1607) was used to measure the dose rates in the cores of acrylic phantoms (3 inches long 
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and 1 inch in diameter) located in all empty slots of the exposure rack in the plexiglass chamber. ESR signals were 
measured with a calibration curve based on standard calibration dosimeters provided by the National Institute 
of Standard and Technology (Gaithersburg, MD). The calibration curve was verified by inter-comparison with 
the National Physical Laboratory in the United Kingdom. The corrections applied to the measured dose rates in 
phantoms were for decay of the Co-60 source and for a small difference in mass-energy absorption coefficients 
for water and soft tissue at the Co-60 energy level. The radiation field was previously reported to be uniform 
within ± 2%19,32.

Housing and care of animals after irradiation.  After irradiation, animals were returned to their cages 
and monitored three to four times daily (early morning, late morning, late afternoon and evening). Sick animals 
were monitored closely and a health score was given at each time of monitoring in accordance with pre-defined 
criteria described and approved in the IACUC protocol. A predetermined threshold health score that neces-
sitated euthanasia was also approved in the IACUC protocol; mice that reached this threshold health score 
were humanely euthanized. Pain and distress were monitored using several criteria including unresponsiveness, 
abnormal posture, unkempt appearance, immobility, labored breathing, respiratory distress, and lack of coordi-
nation. A mouse exhibiting any of the following symptoms was determined to be moribund and was euthanized: 
inability of the mouse to right itself, limb paralysis, abdominal breathing, a constant twitching, trembling, or 
tremor that lasted for more than 10 s, or greater than 35% weight loss as per IACUC policy. Animals were eutha-
nized according to American Veterinary Medical Association (AVMA) guidelines.

Survival studies with JNJ‑26366821 in CD2F1 and C57/BL6 mice.  The survival studies in CD2F1 
male mice evaluated JNJ-23666821 treatment (SC) (0.3 mg or 1 mg/kg) 24 h post-TBI and JNJ-26366821 treat-
ment (0.3 mg/kg) 4 h post-TBI. Each treatment group for JNJ-26366821 and its vehicle (saline) contained 24 
animals and the radiation dose for both studies was 9.35 Gy (~ LD70/30, 70% mortality over 30-day period). 
The efficacy of JNJ-26366821 as a radiation mitigator against morbidity and mortality was then further con-
firmed in C57BL/6 male mice. The C57BL/6 mice were administered 1  mg/kg JNJ-26366821 24  h post-TBI 
(8.0 Gy, ~ LD70/30) in the same manner as the CD2F1 mice. Mice in all studies were weighed prior to start of the 
study, animals outside ± 10% of the mean weight were excluded, and selected mice were randomized into groups 
of four animals per box. Survival was monitored up to four times a day when warranted for 30 days and surviv-
ing animals were euthanized at the completion of the observational period. Survival data was plotted as Kaplan–
Meier plots and statistical significance of the survival differences was determined by log-rank and Fisher’s exact 
tests using GraphPad Prism 8 software.

Dose and time optimization study with JNJ‑26366821 in CD2F1 male mice.  Five dose levels of 
JNJ-26366821 (0.1, 0.3, 1.0, 2.0, 3.0 mg/kg) were selected to determine the optimum single dose of JNJ-26366821 
to achieve maximum efficacy at 24 h post-TBI in CD2F1 mice. Treatment and vehicle cohorts (n = 24 mice/
cohort) were irradiated at 9.35 Gy (~ LD70/30) and subsequently administered one of the doses listed above 
or the equivalent volume of the vehicle. Another dose optimization study was conducted at 4 h post-TBI with 
treatment and vehicle cohorts (n = 24 mice/cohort) exposed to 9.75 Gy (~ LD 90/30). Here, 4 different doses of 
JNJ-26366821 (0.1, 0.3, 1.0, and 3.0 mg/kg) were tested.

After determining the optimal dose of 1.0 mg/kg in the above studies, a time optimization study was per-
formed by administering JNJ-26366821 at different time points (4, 8 and 12 h post-TBI). Six groups, three 
treatment groups and three time-matched vehicle groups (n = 24 mice/group), were used in this study. Each 
group was irradiated at 9.75 Gy (~ LD90/30) and administered the optimal dose of JNJ-26366821 (1.0 mg/kg) 
or vehicle (saline) at 4, 8, or 12 h post-TBI. Animals were monitored for 30 days in the same way as described 
previously for all survival studies.

Hematology studies with JNJ‑26366821.  To study the effects of JNJ-26366821 on recovery from 
hematopoietic injury following TBI, CD2F1 male mice (n = 10/group) were treated with either JNJ-26366821 
(1 mg/kg) or its vehicle (saline) 24 h after TBI at a non-lethal dose of 7.0 Gy. A non-lethal dose was used to allow 
for animal survival while following the recovery from the hematopoietic injury that takes place following TBI. 
In addition, a group of sham-irradiated CD2F1 male mice were given either the drug or saline. Additionally, 
blood was collected from C57BL/6 male mice irradiated at an LD70/30 dose (8.0 Gy). Mice were anesthetized 
with isoflurane (Hospira Inc., Lake Forest, IL) and blood was collected from the submandibular vein using a 
23 G needle at 2 h and 1, 3, 7, 10, 14, and 21 days post-TBI. Mice were allowed to recover fully from anesthesia 
and monitored closely for any signs of a post-anesthesia reaction or bleeding at the collection site before being 
returned to group-housed cages. Approximately 20 µL of blood was collected into tubes containing EDTA and 
blood was continually rotated until CBC/differential analysis of white blood cell (WBC), absolute neutrophil 
(NEU), monocytes (MON), lymphocyte (LYM), and platelet (PLT) counts with the HESKA Element HT™ 5 
Analyzer system (HESKA Corporation, Loveland, CO).

FLT3‑L determination in serum by ELISA.  Blood was collected from male C57BL/6 mice via cardiocen-
tesis into Microtainer serum collection tubes (BD item #36596, Franklin Lakes, New Jersey) from animals anes-
thetized with isoflurane (5% induction, 2% maintenance); following blood collection animals were euthanized. 
Serum was collected following centrifugation for 10 min at 2400 × g. Circulating FLT3-L levels were determined 
by ELISA analysis (R&D Systems item#MFK00, Minneapolis, MN) performed according to the manufacturer’s 
instructions; serum was diluted 1:3.
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Colony forming unit assay from femoral bone marrow.  Following euthanasia, femurs were collected 
and the bone marrow was extracted by flushing with IMDM with 2% FBS then plated (2 × 105cells / plate) follow-
ing protocols from the manufacturer (Mouse Colony-Forming Cell Assays Using MethoCult, Stem Cell Technol-
ogies, Cambridge, MA). Cultures were incubated for 14 days after plating and Granulocyte–macrophage colony 
forming units (CFU-GM), granulocyte-erythrocyte-monocyte-macrophage CFU (CFU-GEMM), colony-form-
ing unit-erythroid (CFU-E) and erythroid burst-forming units (BFU-E) were identified and quantified using a 
Nikon TS100F microscope. Fifty or more cells were considered one colony. Data are show as mean ± standard 
error of mean (SEM) and statistical significance was determined between irradiated vehicle-treated and drug-
treated groups33.

Megakaryocytes from Sternal bone marrow.  Also following euthanasia, sterna were collected on 
30  days post-TBI. The sterna were fixed in a 20:1 volume of fixative (10% buffered formalin) to tissue then 
embedded in paraffin and longitudinal 5 μm sections were stained with regular hematoxylin and eosin (H&E) 
stain following standard protocol33. Megakaryocyte numbers were counted from each slide.

Determination of dose reduction factor (DRF)/long term survival.  Male C57BL/6 mice were dis-
tributed into one of twelve groups with 6 groups administered saline and 6 groups administered 1.0 mg/kg JNJ-
26366821 24 h after TBI. The groups that ultimately received saline were irradiated at the following doses: 7.5, 
8.0, 8.5, 9.0, 9.5, and 10.0 Gy. The groups that ultimately received JNJ-26366821 were irradiated at the following 
doses: 8.0, 8.5, 9.0, 9.5, 10.0, and 10.5 Gy. Animals were monitored as mentioned above in the methods for the 
survival studies. Thirty days post-TBI, the survival in each radiation dose group was used for probit analysis 
(IBM SPSS Statistics 25.0) to determine the LD50/30 value for both saline or JNJ-26366821treatment34 to calcu-
late the DRF. Surviving animals from the DRF studies were monitored for up to 6 months post-TBI to examine 
long term survival.

Statistical analysis.  Survival data was plotted as Kaplan–Meier plots; GraphPad Prism 9 software was uti-
lized to perform Fisher’s exact test to compare survival at 30 days and a log-rank test to compare survival curves. 
Probit analysis was conducted with IBM SPSS Statistics 25.0 and a student’s t-test was used to assess differences 
between groups. Averages were reported + /− standard error of the mean (SEM).

Received: 2 December 2021; Accepted: 11 February 2022

References
	 1.	 Singh, V. K. & Seed, T. M. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval 

status: part I. Radiation sub-syndromes, animal models and FDA-approved countermeasures. Int. J. Radiat. Biol. 93, 851–869. 
https://​doi.​org/​10.​1080/​09553​002.​2017.​13324​38 (2017).

	 2.	 Singh, V. K., Romaine, P. L. & Seed, T. M. Medical countermeasures for radiation exposure and related injuries: characterization 
of medicines, FDA-approval status and inclusion into the strategic national stockpile. Health Phys. 108, 607–630. https://​doi.​org/​
10.​1097/​hp.​00000​00000​000279 (2015).

	 3.	 Singh, V. K. & Seed, T. M. Radiation countermeasures for hematopoietic acute radiation syndrome: growth factors, cytokines and 
beyond. Int. J. Radiat. Biol. 97, 1526–1547. https://​doi.​org/​10.​1080/​09553​002.​2021.​19690​54 (2021).

	 4.	 Amgen Inc. Neupogen (filgrastim) injection for subcutaneous or intravenous use. (2015).
	 5.	 Amgen Inc. NEULASTA (pegfilgrastim) injection, for subcutaneous use. (2015).
	 6.	 Sanofi-Aventis U.S. LLC. LEUKINE (sargramostim) for injection, for subcutaneous or intravenous use. (2018).
	 7.	 Amgen Inc. NPLATE (romiplostim) for injection, for subcutaneous use. (2021).
	 8.	 Kuter, D. J. The biology of thrombopoietin and thrombopoietin receptor agonists. Int. J. Hematol. 98, 10–23. https://​doi.​org/​10.​

1007/​s12185-​013-​1382-0 (2013).
	 9.	 Rodeghiero, F. & Carli, G. Beyond immune thrombocytopenia: the evolving role of thrombopoietin receptor agonists. Ann. 

Hematol. https://​doi.​org/​10.​1007/​s00277-​017-​2953-6 (2017).
	10.	 Andrea, L. D. et al. Medical countermeasures for platelet regeneration after radiation exposure. Radiat. Res. https://​doi.​org/​10.​

1667/​RROL01.1 (2011).
	11.	 Bunin, D. I. et al. Romiplostim (Nplate) as an effective radiation countermeasure to improve survival and platelet recovery in mice. 

Int. J. Radiat. Biol. 96, 145–154. https://​doi.​org/​10.​1080/​09553​002.​2019.​16054​65 (2020).
	12.	 Kelemen, E., Cserhati, I. & Tanos, B. Demonstration and some properties of human thrombopoietin in thrombocythaemic sera. 

Acta Haematol. 20, 350–355 (1958).
	13.	 Kuter, D. J. Thrombopoietin and thrombopoietin mimetics in the treatment of thrombocytopenia. Annu. Rev. Med. 60, 193–206. 

https://​doi.​org/​10.​1146/​annur​ev.​med.​60.​042307.​181154 (2009).
	14.	 Cwirla, S. E. et al. Peptide agonist of the thrombopoietin receptor as potent as the natural cytokine. Science 276, 1696–1699 (1997).
	15.	 Knight, E. et al. Nonclinical safety assessment of a synthetic peptide thrombopoietin agonist: effects on platelets, bone homeostasis, 

and immunogenicity and the implications for clinical safety monitoring of adverse bone effects. Int. J. Toxicol. 30, 385–404. https://​
doi.​org/​10.​1177/​10915​81811​404708 (2011).

	16.	 Liem-Moolenaar, M. et al. Pharmacodynamics and pharmacokinetics of the novel thrombopoietin mimetic peptide RWJ-800088 
in humans. Clin. Pharmacol. Ther. 84, 481–487 (2008).

	17.	 Mouthon, M. A., Van der Meeren, A., Vandamme, M., Squiban, C. & Gaugler, M. H. Thrombopoietin protects mice from mortality 
and myelosuppression following high-dose irradiation: importance of time scheduling. Can. J. Physiol. Pharmacol. 80, 717–721 
(2002).

	18.	 Ghosh, S. P. et al. Gamma-tocotrienol, a tocol antioxidant as a potent radioprotector. Int. J. Radiat. Biol. 85, 598–606. https://​doi.​
org/​10.​1080/​09553​00090​29851​28 (2009).

	19.	 Ghosh, S. P. et al. Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD(R) in mice. J. Radiat. 
Res. 53, 526–536. https://​doi.​org/​10.​1093/​jrr/​rrs001 (2012).

https://doi.org/10.1080/09553002.2017.1332438
https://doi.org/10.1097/hp.0000000000000279
https://doi.org/10.1097/hp.0000000000000279
https://doi.org/10.1080/09553002.2021.1969054
https://doi.org/10.1007/s12185-013-1382-0
https://doi.org/10.1007/s12185-013-1382-0
https://doi.org/10.1007/s00277-017-2953-6
https://doi.org/10.1667/RROL01.1
https://doi.org/10.1667/RROL01.1
https://doi.org/10.1080/09553002.2019.1605465
https://doi.org/10.1146/annurev.med.60.042307.181154
https://doi.org/10.1177/1091581811404708
https://doi.org/10.1177/1091581811404708
https://doi.org/10.1080/09553000902985128
https://doi.org/10.1080/09553000902985128
https://doi.org/10.1093/jrr/rrs001


11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3485  | https://doi.org/10.1038/s41598-022-07426-7

www.nature.com/scientificreports/

	20.	 Satyamitra, M. M. et al. hematopoietic recovery and amelioration of radiation-induced lethality by the vitamin e isoform delta-
tocotrienol. Radiat. Res. 175, 736–745. https://​doi.​org/​10.​1667/​RR2460.1 (2011).

	21.	 Kulkarni, S. et al. Gamma-tocotrienol protects hematopoietic stem and progenitor cells in mice after total-body irradiation. Radiat. 
Res. 173, 738–747. https://​doi.​org/​10.​1667/​RR1824.1 (2010).

	22.	 Samtani, M. N., Perez-Ruixo, J. J., Brown, K. H., Cerneus, D. & Molloy, C. J. Pharmacokinetic and pharmacodynamic modeling 
of pegylated thrombopoietin mimetic peptide (PEG-TPOm) after single intravenous dose administration in healthy subjects. J. 
Clin. Pharmacol. 49, 336–350. https://​doi.​org/​10.​1177/​00912​70008​329559 (2009).

	23.	 Satyamitra, M. et al. A TPO receptor agonist, ALXN4100TPO, mitigates radiation-induced lethality and stimulates hematopoiesis 
in CD2F1 mice. Radiat. Res. 175, 746–758. https://​doi.​org/​10.​1667/​RR2462.1 (2011).

	24.	 Mouthon, M. A. et al. Thrombopoietin promotes hematopoietic recovery and survival after high-dose whole body irradiation. Int. 
J. Radiat. Oncol. Biol. Phys. 43, 867–875 (1999).

	25.	 Mouthon, M. A. et al. Single administration of thrombopoietin to lethally irradiated mice prevents infectious and thrombotic 
events leading to mortality. Exp. Hematol. 29, 30–40 (2001).

	26.	 Sartori, R., Candiotto, L., Ruggeri, M. & Tagariello, G. Immune thrombocytopenia successfully treated with eltrombopag following 
multiple therapies including romiplostim. Blood Transfus. 12(Suppl 1), s151-152. https://​doi.​org/​10.​2450/​2013.​0135-​13 (2014).

	27.	 Scaramucci, L. et al. Reciprocal absence of cross-resistance between eltrombopag and romiplostim in two patients with refractory 
immune thrombocytopenic purpura. Blood Transfus. 12, 605–607. https://​doi.​org/​10.​2450/​2014.​0246.​13 (2014).

	28.	 Gonzalez-Porras, J. R. et al. Use of eltrombopag after romiplostim in primary immune thrombocytopenia. Br. J. Haematol. 169, 
111–116. https://​doi.​org/​10.​1111/​bjh.​13266 (2015).

	29.	 Kuter, D. J. et al. Treatment patterns and clinical outcomes in patients with chronic immune thrombocytopenia (ITP) switched to 
eltrombopag or romiplostim. Int. J. Hematol. 101, 255–263. https://​doi.​org/​10.​1007/​s12185-​014-​1731-7 (2015).

	30.	 Piccin, A., Amaddii, G., Natolino, F., Billio, A. & Cortelazzo, S. Idiopathic thrombocytopenic purpura resistant to eltrombopag, 
but cured with romiplostim. Blood Transfus. 12(Suppl 1), s149-150. https://​doi.​org/​10.​2450/​2013.​0289-​12 (2014).

	31.	 U.S. Food and Drug Administration. Guidance for industry: Product development under the Animal Rule. (2015).
	32.	 Ghosh, S. P. et al. Gamma tocotrienol modulates radiation-induced microRNA expression in mouse spleen Radiation Research, 

accepted for publication. (2016).
	33.	 Kumar, V. P. et al. PEGylated IL-11 (BBT-059): a novel radiation countermeasure for hematopoietic acute radiation syndrome. 

Health Phys. 115, 65–76. https://​doi.​org/​10.​1097/​HP.​00000​00000​000841 (2018).
	34.	 Sharma, N. K. et al. Delayed effects of acute whole body lethal radiation exposure in mice pre-treated with BBT-059. Sci. Rep. 10, 

6825. https://​doi.​org/​10.​1038/​s41598-​020-​63818-7 (2020).

Acknowledgements
The authors gratefully acknowledge Kefale Wuddie, Zemenu Aschenake, HM1 Paul O’Brien, and Fialka G. Ward 
for technical assistance. The authors also would like to thank Dr. Carmen Rios and Dr. Merriline Satyamitra for 
their contributions in the scientific discussion and intellectual input. Support for the work was provided by grants 
from the National Institute of Allergy and Infectious Diseases (AA112044-001-04000 to SG and 1U01AI133608-
01 to SG), JPC-7 project DM178020, and the AFRRI Intramural funding RAB23338. The opinions contained 
herein are the private views of the authors, and are not necessarily those of Armed Forces Radiobiology Research 
Institute, the Uniformed Services of the University of the Health Sciences, or the Department of Defense.

Author contributions
Conceived and designed the experiments: S.P.G., C.G., V.P.K., G.P.H.H., G.E., M.G. Performed the experiments: 
V.P.K., G.P.H.H., S.B., S.S., B.H., N.K.S., S.P.G. Analyzed the data: V.P.K., G.P.H.H., B.H., S.B. Wrote the paper: 
G.P.H.H., V.P.K., N.K.S., S.P.G., G.E., M.G., C.G.

Competing interests 
The following authors (VPK, GPHH, SS, SB, NKS, BH, CG and SPG) declare no conflict of interest. MG and GE 
are employees of Johnson & Johnson and its subsidiary Janssen Pharmaceuticals is working on the development 
of JNJ-26366821 and stand to benefit financially from the successful development of the compound.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​07426-7.

Correspondence and requests for materials should be addressed to S.P.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection 
may apply 2022

https://doi.org/10.1667/RR2460.1
https://doi.org/10.1667/RR1824.1
https://doi.org/10.1177/0091270008329559
https://doi.org/10.1667/RR2462.1
https://doi.org/10.2450/2013.0135-13
https://doi.org/10.2450/2014.0246.13
https://doi.org/10.1111/bjh.13266
https://doi.org/10.1007/s12185-014-1731-7
https://doi.org/10.2450/2013.0289-12
https://doi.org/10.1097/HP.0000000000000841
https://doi.org/10.1038/s41598-020-63818-7
https://doi.org/10.1038/s41598-022-07426-7
https://doi.org/10.1038/s41598-022-07426-7
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Mitigation of total body irradiation-induced mortality and hematopoietic injury of mice by a thrombopoietin mimetic (JNJ-26366821)
	Results
	JNJ-26366821 administered 4–24 h post-TBI increases survival. 
	JNJ-26366821 dose-dependently enhances survival post-TBI. 
	JNJ-26366821 enhances survival up to 24 h post-TBI. 
	JNJ-26366821 administered 24 h post-TBI enhances recovery of neutrophils, platelets, and bone marrow progenitor cells. 
	JNJ-26366821 enhances survival and hematopoietic recovery in an additional mouse strain. 
	JNJ-26366821 has a favorable dose reduction factor and enhances long term survival of C57BL6 male mice. 

	Discussion
	Conclusion. 

	Materials and methods
	Animals. 
	Drug and drug preparation. 
	Total body irradiation (TBI) studies. 
	Housing and care of animals after irradiation. 
	Survival studies with JNJ-26366821 in CD2F1 and C57BL6 mice. 
	Dose and time optimization study with JNJ-26366821 in CD2F1 male mice. 
	Hematology studies with JNJ-26366821. 
	FLT3-L determination in serum by ELISA. 
	Colony forming unit assay from femoral bone marrow. 
	Megakaryocytes from Sternal bone marrow. 
	Determination of dose reduction factor (DRF)long term survival. 
	Statistical analysis. 

	References
	Acknowledgements


