Table 1 Tabulation for important symbols and parameters.

From: Numerical assessment of heat and mass transportation in \(\upgamma {\mathrm{Al}}_{2}{\mathrm{O}}_{3}{-}{\mathrm{H}}_{2}\mathrm{O}/{\mathrm{C}}_{2}{\mathrm{H}}_{6}{\mathrm{O}}_{2}\) nanofluids influenced by Soret and Dufour effects

Name

Symbol

Unit

Name

Symbols or expression

\(u,v,w\)

Velocity components

\(\mathrm{m}/\mathrm{s}\)

Nano fluid

nf

Density

\(\rho\)

\(\mathrm{kg}/{\mathrm{m}}^{3}\)

Fluid

f

Temperature

\(T\)

\(\mathrm{K}/\mathrm{C}\)

Solid particle

s

Concentration

\(C\)

\(\mathrm{mol}/{\mathrm{m}}^{3}\)

Rate of chemical reaction

\({k}_{1}\)

Electrical conductivity

\(\sigma\)

\(\mathrm{S}/\mathrm{m}\)

Volume fraction

\(\phi\)

Heat capacity

\({C}_{p}\)

\(\mathrm{J}/\mathrm{K}\)

\(\mathrm{Ethylene glycol}\)

\(\upgamma {\mathrm{Al}}_{2}{\mathrm{O}}_{3}\)

Thermal conductivity

\(k\)

\(\mathrm{W}/\mathrm{mK}\)

Hartmann

\(H{a}^{2}=\frac{2L{B}_{0}^{2}}{U}{\mathrm{e}}^{-\frac{x}{L}}\)

Current density

\({\varvec{J}}\)

\(\mathrm{A}/{\mathrm{m}}^{2}\)

Prandtl

\(\frac{1}{\mathrm{Pr}}=\frac{{k}_{f}}{{\nu }_{f}{\left(\rho {c}_{p}\right)}_{f}}\)

Viscosity

\(\mu\)

\(\mathrm{PI}\)

Diffusion

\({D}_{f}=\frac{D{k}_{T}}{{c}_{s}{\left({c}_{p}\right)}_{f}{\nu }_{f}}\frac{\left({C}_{w}-{C}_{\infty }\right)}{\left({T}_{w}-{T}_{\infty }\right)}\)

Magnetic field

\({\varvec{B}}\)

Tesla (T)

Eckert

\(E{c}_{x}=\frac{1}{{\left({c}_{p}\right)}_{f}}\frac{{U}^{2}}{{T}_{w}-{T}_{\infty }}{\mathrm{e}}^\frac{2x}{L}\)

Electric field

\(E\)

\(\mathrm{N}/\mathrm{C}\)

Radiation

\(R=\frac{16{\sigma }^{*}{T}_{\infty }^{3}}{3{k}^{*}{k}_{f}}\)

Gravitational Acceleration

\(g\)

\(\mathrm{m}/{\mathrm{s}}^{2}\)

Schmidt

\(Sc=\frac{{\nu }_{f}}{D}\)

Kinematics viscosity

\(\nu\)

\({\mathrm{m}}^{2}/\mathrm{s}\)

Soret

\(Sr=\frac{D{k}_{T}}{{\nu }_{f}{T}_{m}}\frac{\left({T}_{w}-{T}_{\infty }\right)}{\left({C}_{w}-{C}_{\infty }\right)}\)

Transformed variable

\(\aleph\)

 

Chemical reaction numbers

\(\delta =\frac{2{k}_{1}L}{U}{\mathrm{e}}^{-\frac{x}{L}}\)