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Coupling antecedent rainfall 
for improving the performance 
of rainfall thresholds for suspended 
sediment simulation of semiarid 
catchments
Zhaorui Yin1, Guanghua Qin1, Li Guo1, Xuan Tang1, Jinxing Wang2 & Hongxia Li1*

Suspended sediment transport is one of the essential processes in the geochemical cycle. This study 
investigated the role of rainfall thresholds in suspended sediment modeling in semiarid catchments. 
The results showed that rainfall-sediment in the study catchment (HMTC) could be grouped into two 
patterns on the basis of rainfall threshold 10 mm. The sediment modeling based on LSTM model with 
the rainfall threshold (C-LSTM scheme) and without threshold (LSTM scheme) were evaluated and 
compared. The results showed that the C-LSTM scheme had much better performances than LSTM 
scheme, especially for the low sediment conditions. It was observed that in the study catchment, 
the mean NSE was marginally improved from 0.925 to 0.934 for calibration and 0.911 to 0.924 for 
validation for medium and high sediment (Pattern 1); while for low sediment (Pattern 2), the mean 
NSE was significantly improved from -0.375 to 0.738 for calibration and 0.171 to 0.797 for validation. 
Results of this study indicated rainfall thresholds were very effective in improving suspended sediment 
simulation. It was suggested that the incorporation of more information such as rainfall intensity, land 
use, and land cover may lead to further improvement of sediment prediction in the future.

Suspended sediment transport is a very important part of both the catchment and global geochemical cycle1, 
which has a great influence on many respects such as pollution and degradation2–4. So suspended sediment 
modeling is crucial for catchment management and operation of water resources projects5–7. However, the trans-
portation of sediment is a complex process, which includes fluid-sediment interaction and the characteristics 
of both flow and sediment. This makes the sediment modeling quite difficult by using physically-based models, 
which are high computational costs and have a high demand for input data5,8,9.

The AI (Artificial Intelligence) and computational approaches such as artificial neural networks (ANNs) 
have the effective ability with regard to the high non-linear nature and complexity of the employed data10,11. It 
has been developed and widely used for hydrologic modeling recently12–16. Specifically, in the field of sediment 
prediction and forecasting, there are many AI techniques and methods that have been used, such as artificial 
neural network (ANN), support vector machine (SVM), fuzzy logic (FL), and numerous search optimization 
and statistical learning method12–16. For example, Kisi et al.17 modeled the suspended sediment using genetic 
programming. Cobaner et al.18 estimated suspended sediment concentration by adaptive neuro-fuzzy and neural 
network approaches. Singh and Panda19 simulated daily suspended sediment load using artificial neural networks 
and cross validation method for a small agricultural watershed.

Long Short-Term Memory (LSTM) networks are a special type of recurrent neural networks with an internal 
memory, which has the ability to learn and store long-term dependencies of the input–output relationship20,21. 
So it has great capability in capturing highly complex data distributions for predictions than traditional neural 
networks without explicit cell memory10,20,22,23. Such a superiority and efficiency of the LSTM model has been 
reported in the fields of flood forecasting24, runoff modeling20, groundwater level simulation25, and sediment 
modeling26–28. Kratzert et al.20 simulated rainfall-runoff and the results revealed that LSTM could recognize the 
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long-term relation of inputs and targets. Nourani and Behfar 28 proposed two new seasonal-based LSTM models 
for runoff-sediment modeling, and the results showed that the models had good performances. Huang et al.22 
adopted LSTM and other neural networks for real-time forecasting of suspended sediment concentrations res-
ervoirs, and the results showed that LSTM was superior to those other machine learning models. Kaveh et al.29 
evaluated the efficiency of LSTM model in estimating suspended sediment concentration in a river in the United 
States, and it indicated that LSTM model led to more accurate results.

Although LSTM network can extract the complex relationship patterns of data, yet it still could not effectively 
capture data with thresholds. Thresholds and other non-linear behaviors are quite common inhydrologic and 
geomorphic systems30, and they can occur at different levels of complexity and may limit the predictability of 
hydrological processes31–33. Rainfall threshold is one of the most key controlling factors for runoff, sediment 
and landslide33–39. For example, Guzzetti et al.40 studied the rainfall thresholds for the initiation of landslides 
worldwide. Western and Grayson 41 found that surface runoff was a threshold process controlled by catchment 
wetness conditions. Castillo et al.34 explored the role of antecedent soil water content in the runoff response of 
semiarid catchments, and results showed that the antecedent soil water content was important for controlling 
runoff during medium and low-intensity storms.

The role of rainfall threshold and soil moisture was found especially obvious in semiarid and arid 
environments42,43.Soil erosion is accelerated on land where erosive rain falls on landscapes and an obvious sedi-
ment process will occur when rainfall over some threshold4,44,45. Different runoff and sediment will produce under 
different rainfall conditions46. Meng et al.44 explored the impact of rainfall patterns on the soil loss of the hillslope, 
and results showed that the soil erosion was quite different under moderate, heavy and storm rainfall patterns.

The Loess Plateau, which is located in the arid/semiarid regions of North China, is highly fragmented by 
gullies and has suffered severe soil erosion47–49.The catchment in this study (Heimutouchuan, HMTC) is a small 
semiarid catchment and flows down the Loess Plateau. It is noticed that the suspended sediment transport rate 
would increase when a certain rainfall amount is exceeded, which indicated the inherent rainfall-sediment 
mechanism and relationship changes when reaching or exceeding some rainfall threshold. So it is necessary to 
explore the rainfall-sediment patterns and the role of rainfall threshold in sediment prediction.

The main objective of this study is to improve the suspended sediment prediction of semiarid catchments 
through (1) exploring the rainfall thresholds based on rainfall both on the given day and antecedent days, (2) 
integrating rainfall thresholds in the LSTM model for improving sediment modeling. This study is expected to 
provide a better understanding and modeling of the sediment processes of semiarid catchments.

Methodology
Study area and data.  HMTC catchment is a tributary river of the Yellow River and flows down the Loess 
Plateau. Figure 1 shows location of the catchment. HMTC lies between 109°15′–109°37′ E longitude and 37°44′–
38°00′ N latitude. The location of rain and flow gauges is also showed in Fig. 1. There are three rain gauges and 
one flow (sediment) gauge in HMTC catchment. Data used in this study are daily runoff (Qt), daily areal rainfall 
(Pt, weighted by Thiessen polygon method for the three rainfall stations) and daily suspended sediment trans-
port rate (St) in 1980–2010 (July to October).

The catchment area of HMTC is 327km2 and the characteristics of the catchment for the present study are 
given in Table1. The average annual rainfall is 260 mm and the average annual temperature is 8.6 °C. The daily 
average runoff is between 0.1 and 67.1 m3/s, and the daily sediment transport rate changes widely from 0.001 to 
30,100 kg/s, which mainly occurs in summer (July to August). The soil type and land use are shown in Fig. 2. The 
soil type of HMTC is mainly PLe and FLd (FAO90, HWSD) (Fig. 2). The area contribution of the HMTC catch-
ment is 52.76% under arid land, 45.72% under grass cover, 0.54% under forest land, 0.14% under other construc-
tion land, and 0.45% for under unutilized land with a remaining 0.38% underwater bodies for the year (Table 2).  

LSTM model.  The LSTM model is one of the deep learning techniques which shows the great ability for 
dealing with time series problems by considering information selections and long-term dependencies21. LSTM 

Figure 1.   Location of the study area and stations (map generated using ArcMap 10.4(10.4.1)50 using ASTER 
GDEM digital elevation model 30 m resolution51).
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can capture highly complex data distributions through memory units (Fig. 3), composed of a forget gate, an 
input gate and an output gate. The addition of the memory unit in the hidden layer enables the LSTM to learn 
the state characteristics of the long-period sequence data, making the memory information in the time series 
controllable, thereby solving the problem of the disappearance or explosion of the traditional RNN (Recurrent 
Neural Network) gradient10,20.

LSTM introduces a new internal state variable ct dedicated to linear cyclical information transmission, and 
at the same time non-linearly outputs information to the external state of the hidden layer ht , ct and ht the cal-
culation formula is as follows:

c̃t is the candidate state variable obtained by the nonlinear function:

(1)ct = ft ⊗ ct−1 + it ⊗ c̃t

(2)ht = ot ⊗ tanh(ct)

Table 1.   Characteristics of the study catchment.

Area (km2)

Elevation (m)

Average slope (°) Average annual rainfall (mm) Average annual temperature (°C)

Daily runoff 
(m3/s)

Daily sediment 
transport rate 
(kg/s)

Max Min Mean Max Min Max Min

327 1401 1009 1201 11.95 260 8.6 67.4 0.1 30,100 0.001

Figure 2.   Soil type (a) and land use (b) of the study area.

Table 2.   Soil and land use types in the study area.

Categories

Soil type Land use

Ple Fld Arid land Grass land Forest land Construction land
Rivers and 
Reservoirs Unutilized land

Percentage 13.52% 86.48% 52.76% 45.72% 0.54% 0.14% 0.38% 0.45%

Figure 3.   Structure of LSTM neural network model ( ft , it , and ot are forget gate, input gate and output gate 
respectively; σ and tanh are activation functions; ⊗ is matrix and element product, ⊕ is addition).
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LSTM introduces a gating mechanism to control the path of information transmission. The calculation for-
mula for the three gates it , ft , ot and the memory unit are:

LSTM network introduces the gating mechanism to control the path of information transmission, the cell 
state vector ensures a continuously updated long-term memory52,53. In such a method, the forget and input bits 
respectively decide (i) whether to reset the cell states from the previous time-stamp and forget the past and (ii) 
whether to increment the cell states from the previous time-stamp to incorporate new information into long-
term memory52,53. Therefore, in the memory unit, not only a piece of certain key information can be captured at 
sometime through the forget gate, and the key information can be saved for a certain time interval, but also the 
historical information can be directly emptied through the forget gate. In this way, the LSTM neural network 
can selectively retain or forget previous information.

In this study, the rainfall thresholds are integrated in the LSTM model for improving sediment modeling.The 
sediments modeling is developed based on LSTM model without threshold (LSTM scheme) and with the rainfall 
threshold (C-LSTM scheme). The training of C-LSTM after data classification means a part of forgetting and 
selection in advance according to the mechanism. For example, when the input and output data corresponding 
to high sediment appears in the model operation, the previous low sediment content will be forgotten, and the 
high sediment content retains more information. In this way, the C-LSTM method would get the useful infor-
mation and not miss the essentials.

Antecedent rainfall model.  Rainfall threshold is affected by rainfall on the given day and antecedent days. 
Antecedent rainfall is usually estimated by an empirical approach through an index (the Antecedent Precipita-
tion Index, API) based on the cumulated rainfall with a short period preceding the event50. Several antecedent 
rainfall models have been proposed52,53, which are as follows:

where Pa,t is antecedent rainfall (mm) for day t; K is a constant coefficient, usually about 0.8–0.9; Pt−n is the 
rainfall (mm) on the nth day before 0, and n is usually 5-15d; d is the recession curve coefficient, which can be 
derived from the hydrograph (d < 0)51.

Equation (8) considers the fast drainage of soils and results in a shift of the distribution of the daily rainfall 
magnitudes to lower antecedent daily rainfall values54. HMTC catchment is located in the semiarid areas and 
does not have large long-term water storage capacity, so the Eq. (8) with lower antecedent daily rainfall is more 
appropriate for estimation of soil moisture conditions in the study catchment.

The recession curve coefficient d has a strong influence on the magnitude of antecedent rainfall. The larger the 
absolute value of the exponent, the faster water drains from the soil, thus lowering the time interval of effective 
antecedent rainfall influence to the critical water content required to sediment.

Evaluation of model performances.  Nash–Sutcliffe efficiency (NSE), the coefficient of determination 
(R2), root mean square error (RMSE), and relative bias (BIAS) are used to evaluate the accuracy of sediment 
simulation results, which are defined as follows:

where Sobs and Ssim are observed and modeled daily sediment respectively, Sobs,mean , Ssim,mean are the arithmetic 
mean of the observed and modeled daily sediment, i is the ith sample, and n is the number of samples.

(3)c̃t = tanh(Wcxt + Ucht−1 + bc)

(4)it = σ(Wixt + Uiht−1 + bi)

(5)ft = σ(Wf xt + Uf ht−1 + bf )

(6)ot = σ(Woxt + Uoht−1 + bo)

(7)Pa,t = KPt−1 + K2Pt−2 + · · · + KnPt−n

(8)Pa,t = Pt−1 + 2dPt−2 + 3dPt−3 + · · · + ndPt−n

(9)NSE = 1−

∑

(Sobs(i)− Ssim(i))
2

∑

(Sobs(i)− Sobs,mean)
2

(10)R2 =

(
∑n

i=1 (Sobs(i)− Sobs,mean)(Ssim(i)− Ssim,mean)
)2

n
∑n

i=1 (Sobs(i)− Sobs,mean)
2·
∑n

i=1 (Ssim(i)− Ssim,mean)
2

(11)RMSE =

√

∑n
i=1 (Sobs(i)− Ssim(i))2

Smean

(12)BIAS =

∑n
i=1 |Ssim(i)− Sobs(i)|

n
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Results and discussion
Rainfall threshold and rainfall pattern.  To derive rainfall thresholds, the rainfall-sediment relationship 
under different rainfall conditions was investigated to identify patterns in behaviors. Both rainfall on the given 
day (P) and antecedent days (Pa) were considered to link to the sediment (Fig. 4). Antecedent rainfall of HMTC 
was estimated by Eq. (8). After calculation, the recession curve coefficients, i.e., d = − 1.65, and n = 5 days, were 
used in this study for HMTC catchment.

Figure 4 displays the relationship between sediment rate S, and rainfall P + Pa. The red dots were related to 
rainfall (P + Pa) > 10 mm, and the blue dots relating to rainfall (P + Pa) < 10 mm. It was noticed that rainfall-
sediment relationships undergone changes with rainfall over 10 mm. This indicated sediment process would 
change when rainfall exceeds 10 mm threshold. So the rainfall-sediment relationships can be mainly grouped 
into two patterns by rainfall threshold 10 mm. Pattern 1 was associated with medium and high daily rainfall 
(P + Pa > 10 mm) mainly leading to medium and high suspended sediment, while Pattern 2 was low rainfall 
(P + Pa < 10 mm) leading to low sediment.

Comparison of the two schemes for suspended sediment prediction.  The sediment modeling in 
this study is developed based on LSTM model without threshold (LSTM scheme) and with the rainfall threshold 
(C-LSTM scheme). The same data set were used in both LSTM and C-LSTM schemes for acomparative study. 
C-LSTM scheme modeled high sediment and low sediment separately, and LSTM scheme simulated all sedi-
ments. Qt, Pt and Pa,t were used as input data for modeling in this study. Data of 20 years (1980–1999) were used 
for model calibration, and data of 11 years (2000–2010) were used for validation.

The performances of the two schemes were examined using the calibration and validation data set. The 
obtained results of the C-LSTM were compared to LSTM scheme for evaluating the predictive capability. The 
NSE values of the two schemes are presented in Table 3. It was observed that the C-LSTM scheme showed bet-
ter performances in predicting the daily sediment in the study catchment. In Pattern 1 for medium and high 
sediment simulation, the NSE of LSTM was 0.925 and 0.911 for calibration and validation, while the NSE using 
C-LSTM was 0.934 and 0.924, respectively (Table 3). The results showed the simulation was marginally improved.

Moreover, in Pattern 2 with rainfall P + Pa < 10 mm for low sediment simulation, the improvement was more 
significant. It was observed that the LSTM scheme was unable to capture the low suspended sediment rate as it 
was very clear a negative NSE value was predicted during low sediment data. The NSE of LSTM was -0.375 and 
0.171 for calibration and validation, and was improved to 0.738 and 0.797 by C-LSTM. Results suggested that 
the C-LSTM scheme was much better than LSTM scheme based on NSE as performance evaluation criteria.

Figure 5 and Table 4 further compared simulation results for the calibration and validation periods in terms of 
BIAS. The median BIAS in Pattern 1 for the two schemes (LSTM and C-LSTM) was 771.7 kg/s and 757.9 kg/s for 
calibration, as well as, 968.7 kg/s and 811.1 kg/s for validation, respectively; The median BIAS in Pattern 2 for the 
two schemes was 56.3 kg/s and 12.4 kg/s for calibration, while 47.4 kg/s and 16.7 kg/s for validation, respectively. 
The BIAS results also suggested that the C-LSTM scheme was better than the LSTM scheme.

Figure 4.   Relationship of rainfall (P + Pa) to sediment (S).

Table 3.   NSE evaluation of simulation results of two schemes.

Catchment

Pattern 1 (medium and high sediment) Pattern 2 (low sediment)

LSTM C-LSTM LSTM C-LSTM

Calibration Validation Calibration Validation Calibration Validation Calibration Validation

HMTC 0.925 0.911 0.934 0.924 − 0.357 0.171 0.738 0.797
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Further comparisons of the two schemes are shown in the form of a hydrograph in Fig. 6. In pattern 1 for 
medium and high sediment (Fig. 6a), the hydrographs indicated that the modeled suspended sediment rate 
by both models followed the variation in the observed data. In pattern 2, the C-LSTM scheme results showed 
much better performance than that of LSTM scheme. It was seen from the hydrograph that observed and model 
sediment yielded by LSTM scheme was not followed closely, and the hydrographs indicated that LSTM scheme 
overestimated the sediment in pattern 2 during the low rainfall days (Fig. 6b).

Similarly, in the scatter plot, it was observed that results in pattern 1 were closer to the 1:1 line, and the data 
points were scattered around the 1:1 line (Fig. 7a). The RMSE between the observed and modeled sediments 
obtained from the C-LSTM scheme (1047.93 kg/s) was less than that from LSTM scheme (1188.40 kg/s), and 
the R2 was raised from 0.92 to 0.93. Results exhibited that the C-LSTM scheme slightly outperformed LSTM 
scheme for medium and high sediment simulation. In Pattern 2 (Fig. 7b), the RMSE from the C-LSTM scheme 
(27.22 kg/s) was less than that from LSTM scheme (54.22 kg/s). The R2 was raised from 0.28 to 0.75, which also 
suggested that C-LSTM scheme was much better than the LSTM scheme for low sediment simulation.

Figure 5.   Box plot of BIAS indicator for Patten1 (a) and Patten2 (b).

Table 4.   BIAS evaluation for the study catchment (Q1, the lower quartile; Q2, the median; and Q3, the higher 
quartile).

Evaluation 
indicators

Pattern 1 Pattern 2

LSTM C-LSTM LSTM C-LSTM

Calibration Validation Calibration Validation Calibration Validation Calibration Validation

Range [69.8–1,349.3] [400.5–
2,191.1] [34.2–1,225.2] [407.4–

1,957.4] [39.8–186.23] [29.7–73.3] [2.0–74.3] [0.6–36.1]

Mean 782.7 1,009.9 724.1 983.6 79.5 50.5 17.6 17.0

Q1 547.2 901.4 473.5 707.4 45.7 44.1 7.2 8.2

Q2 771.7 968.7 757.9 811.1 56.3 47.4 12.4 16.7

Q3 901.4 1,151.7 865.7 1,046.8 103.6 60.2 26.4 22.9

Figure 6.   Comparison between observed and estimated sediment using the two schemes for Patten1 (a) and 
Patten2 (b).
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Limitations and uncertainties.  Results in this study showed that rainfall threshold was a potentially use-
ful factor for sediment modeling in semiarid areas such as the Loess Plateau of China. However, there were still 
some limitations and uncertainties if only rainfall amount was considered in suspended sediment modeling. For 
example, there were still some events not following the rainfall threshold (Fig. 4). This was mainly because there 
were some other factors which may influence the sediment process such as rainfall intensity (PI)48,55.

The role of rainfall intensity was analyzed and displayed in Table 5. It showed that some high-intensity rain-
storms produce high sediment. For example, the rainfall amount in HMTC on August 8, 1982 (P = 10.01 mm, 
Pa = 1.72 mm) and September 27, 1984 (P = 10.20 mm, Pa = 1.69 mm) was almost the same, but the former had a 
greater PI (10.5 mm/h) which led to the higher sediment (1190 kg/s), while PI of the latter was 3.9 mm/h, leading 
to a lower sediment flux (81.7 kg/s) (Table 5a). This demonstrated high-intensity rainfall would increase soil ero-
sion and sediment response. Another comparison was made between July 7, 2000 and July 19, 1999 (Table 5b). 
The former had a lower rainfall amount (27.65 mm) but higher sediment (3130 kg/s) because of the higher PI 
(30.6 mm/h), while the later led to a lower sediment flux (2310 kg/s) because of the lower PI (11.5 mm/h). These 
indicated that the rainfall intensity had great effects on sediment, and including rainfall intensity as a key factor 
would be helpful for the reduction of sediment predictive uncertainty. Also, there were still some other factors 
such as land use and land cover, which may influence the sediment and need to be further considered in the 
future55.

Conclusions
This study investigated the effectiveness of integrating rainfall thresholds in the sediment modeling in a small 
semiarid catchment in China. The results showed that coupling antecedent rainfall could lead to better rainfall 
thresholds. Evaluation of the accuracies of results produced by the C-LSTM and LSTM scheme showed that 
C-LSTM had much better performances for predicting sediment, especially for low rainfall conditions. This 
demonstrated the C-LSTM scheme had a better suspended sediment simulation capability compared to LSTM 
scheme, which indicated the advances of integrating rainfall thresholds for suspended sediment modeling. The 
results highlighted the importance of integrating rainfall thresholds in sediment prediction in semiarid areas 
such as the Loess Plateau of China. However, the rainfall intensity, land use, and land cover, which were also very 
important for the sediment processes, have not been incorporated in the present study and will be included in 
future research to further improve the estimation capability of suspended sediment.

Received: 30 December 2021; Accepted: 7 March 2022

Figure 7.   Scatter plot of observed and simulated of sediment for Patten1 (a) and Patten2 (b).

Table 5.   Relationship between sediment, rainfall amount and rainfall intensity (hourly). P refers to the 
accumulated rainfall in a day; PI is the maximum rainfall intensity (mm/h) of 1 h.

No. Date S (kg/s) P (mm) Pa (mm) PI (mm/h)

(a)
1982/8/8 1190 10.01 1.72 10.5

1984/9/27 81.7 10.2 1.69 3.9

(b)
2000/7/7 3130 26.09 1.56 30.6

1999/7/19 2310 39.37 1.55 11.5
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