Table 4 Statistic metrics obtained by five ML models to forecast the EC parameter in training stage.
Model | Criteria | Combination | |||
---|---|---|---|---|---|
Combo 1 | Combo 2 | Combo 3 | Combo 4 | ||
ANFIS-A-DEPSO | R | 0.848 | 0.845 | 0.846 | 0.844 |
RMSE | 353.197 | 356.313 | 355.442 | 359.698 | |
MAE | 243.342 | 253.611 | 244.956 | 248.578 | |
RAE | 0.449 | 0.468 | 0.452 | 0.459 | |
MAPE | 12.960 | 14.165 | 13.460 | 12.950 | |
E | 0.719 | 0.714 | 0.715 | 0.709 | |
IA | 0.914 | 0.909 | 0.910 | 0.905 | |
PI | 0.977 | 1.000 | 0.983 | 0.982 | |
ANFIS | R | 0.841 | 0.841 | 0.836 | 0.841 |
RMSE | 360.181 | 360.099 | 366.059 | 360.440 | |
MAE | 250.811 | 250.091 | 257.408 | 252.690 | |
RAE | 0.463 | 0.461 | 0.475 | 0.466 | |
MAPE | 13.740 | 13.631 | 14.596 | 13.908 | |
E | 0.708 | 0.708 | 0.698 | 0.707 | |
IA | 0.908 | 0.908 | 0.905 | 0.908 | |
PI | 0.984 | 0.982 | 1.000 | 0.987 | |
LSSVM | R | 0.825 | 0.826 | 0.829 | 0.827 |
RMSE | 376.503 | 375.911 | 373.261 | 375.117 | |
MAE | 257.907 | 257.315 | 254.815 | 256.712 | |
RAE | 0.476 | 0.475 | 0.470 | 0.474 | |
MAPE | 14.637 | 14.510 | 14.377 | 14.506 | |
E | 0.681 | 0.682 | 0.686 | 0.683 | |
IA | 0.895 | 0.895 | 0.897 | 0.895 | |
PI | 1.000 | 0.998 | 0.994 | 0.997 | |
GRNN | R | 0.790 | 0.811 | 0.813 | 0.804 |
RMSE | 417.344 | 398.072 | 396.565 | 408.553 | |
MAE | 292.164 | 278.826 | 277.396 | 289.653 | |
RAE | 0.539 | 0.514 | 0.512 | 0.534 | |
MAPE | 16.998 | 16.151 | 16.068 | 16.941 | |
E | 0.608 | 0.643 | 0.646 | 0.624 | |
IA | 0.848 | 0.868 | 0.870 | 0.855 | |
PI | 1.000 | 0.981 | 0.979 | 0.996 | |
MARS | R | 0.844 | 0.834 | 0.837 | 0.832 |
RMSE | 357.725 | 368.062 | 364.990 | 369.822 | |
MAE | 245.850 | 252.034 | 256.522 | 258.810 | |
RAE | 0.454 | 0.465 | 0.473 | 0.478 | |
MAPE | 13.273 | 13.793 | 13.944 | 14.456 | |
E | 0.712 | 0.695 | 0.700 | 0.692 | |
IA | 0.910 | 0.903 | 0.905 | 0.902 | |
PI | 0.973 | 0.986 | 0.992 | 1.000 |