Table 4 Statistic metrics obtained by five ML models to forecast the EC parameter in training stage.

From: An improved adaptive neuro fuzzy inference system model using conjoined metaheuristic algorithms for electrical conductivity prediction

Model

Criteria

Combination

Combo 1

Combo 2

Combo 3

Combo 4

ANFIS-A-DEPSO

R

0.848

0.845

0.846

0.844

RMSE

353.197

356.313

355.442

359.698

MAE

243.342

253.611

244.956

248.578

RAE

0.449

0.468

0.452

0.459

MAPE

12.960

14.165

13.460

12.950

E

0.719

0.714

0.715

0.709

IA

0.914

0.909

0.910

0.905

PI

0.977

1.000

0.983

0.982

ANFIS

R

0.841

0.841

0.836

0.841

RMSE

360.181

360.099

366.059

360.440

MAE

250.811

250.091

257.408

252.690

RAE

0.463

0.461

0.475

0.466

MAPE

13.740

13.631

14.596

13.908

E

0.708

0.708

0.698

0.707

IA

0.908

0.908

0.905

0.908

PI

0.984

0.982

1.000

0.987

LSSVM

R

0.825

0.826

0.829

0.827

RMSE

376.503

375.911

373.261

375.117

MAE

257.907

257.315

254.815

256.712

RAE

0.476

0.475

0.470

0.474

MAPE

14.637

14.510

14.377

14.506

E

0.681

0.682

0.686

0.683

IA

0.895

0.895

0.897

0.895

PI

1.000

0.998

0.994

0.997

GRNN

R

0.790

0.811

0.813

0.804

RMSE

417.344

398.072

396.565

408.553

MAE

292.164

278.826

277.396

289.653

RAE

0.539

0.514

0.512

0.534

MAPE

16.998

16.151

16.068

16.941

E

0.608

0.643

0.646

0.624

IA

0.848

0.868

0.870

0.855

PI

1.000

0.981

0.979

0.996

MARS

R

0.844

0.834

0.837

0.832

RMSE

357.725

368.062

364.990

369.822

MAE

245.850

252.034

256.522

258.810

RAE

0.454

0.465

0.473

0.478

MAPE

13.273

13.793

13.944

14.456

E

0.712

0.695

0.700

0.692

IA

0.910

0.903

0.905

0.902

PI

0.973

0.986

0.992

1.000

  1. Significant values are in bold.