Table 5 Statistic metrics obtained by five ML models to forecast the EC parameter in testing stage.

From: An improved adaptive neuro fuzzy inference system model using conjoined metaheuristic algorithms for electrical conductivity prediction

Model

Criteria

Combination

Combo 1

Combo 2

Combo 3

Combo 4

ANFIS-A-DEPSO

R

0.665

0.676

0.671

0.672

RMSE

304.606

289.100

317.061

275.404

MAE

224.062

211.387

241.597

198.092

RAE

0.807

0.762

0.871

0.714

MAPE

12.452

11.573

13.049

10.956

E

0.259

0.333

0.197

0.394

IA

0.792

0.799

0.804

0.801

PI

0.933

0.874

0.996

0.832

ANFIS

R

0.626

0.620

0.650

0.659

RMSE

350.233

359.110

372.765

320.470

MAE

258.478

268.127

283.825

241.088

RAE

0.931

0.966

1.023

0.869

MAPE

13.954

14.229

14.933

12.863

E

0.020

-0.030

-0.110

0.180

IA

0.764

0.762

0.772

0.790

PI

0.947

0.968

0.990

0.887

LSSVM

R

0.676

0.676

0.667

0.671

RMSE

301.595

303.898

309.440

303.767

MAE

221.156

223.020

225.851

221.441

RAE

0.797

0.804

0.814

0.798

MAPE

12.165

12.264

12.415

12.168

E

0.274

0.263

0.235

0.263

IA

0.803

0.800

0.795

0.800

PI

0.964

0.975

1.000

0.972

GRNN

R

0.620

0.628

0.631

0.616

RMSE

284.036

288.484

290.054

295.266

MAE

214.482

221.582

222.083

223.623

RAE

0.773

0.798

0.800

0.806

MAPE

11.843

12.247

12.303

12.565

E

0.356

0.335

0.328

0.304

IA

0.747

0.750

0.750

0.724

PI

0.948

0.969

0.973

1.000

MARS

R

0.630

0.632

0.621

0.648

RMSE

332.071

327.517

322.743

314.030

MAE

249.266

247.801

233.385

231.351

RAE

0.898

0.893

0.841

0.834

MAPE

13.642

13.405

12.773

12.723

E

0.119

0.143

0.168

0.213

IA

0.764

0.772

0.770

0.786

PI

0.998

0.966

0.926

0.890

  1. Significant values are in bold.