Table 3 Numerical values of Sherwood numbers for various values of \(\omega\).

From: Analytic simulation of thermophoretic second grade fluid flow past a vertical surface with variable fluid characteristics and convective heating

\(\omega\)

\({P}_{r}\)

\(K\)

\(\xi =\varepsilon\)

\(-{f}^{{^{\prime}}{^{\prime}}}\left(0\right)\)

\(-\theta {^{\prime}}(0)\)

\(-\phi {^{\prime}}(0)\)

\(0.1\)

\(1.2\)

\(0.7\)

\(0.4\)

\(0.9910\)

\(0.8378\)

\(1.1883\)

\(0.4\)

\(1.2\)

\(0.7\)

\(0.4\)

\(1.0433\)

\(0.8306\)

\(0.8548\)

\(0.7\)

\(1.2\)

\(0.7\)

\(0.4\)

\(1.0718\)

\(0.8242\)

\(0.6753\)

\(1.0\)

\(1.2\)

\(0.7\)

\(0.4\)

\(1.0902\)

\(0.8210\)

\(0.5605\)