Table 4 The ratio of the expected number of measurements to obtain a sample from the noiseless distribution for p-QAOA relative to 1-ma-QAOA on an n vertex graph, assuming an average number of edges \(\langle m \rangle \) for graphs in the datasets.
From: Multi-angle quantum approximate optimization algorithm
n | \(\langle m \rangle \) | \(\epsilon _n =\epsilon _{\langle m \rangle } = 0.01\) | \(\epsilon _n = 0.01, \epsilon _{\langle m \rangle } = 0.05\) | ||||
---|---|---|---|---|---|---|---|
\(p=1\) | \(p=2\) | \(p=3\) | \(p=1\) | \(p=2\) | \(p=3\) | ||
8 | 14.4 | 1.05 | 1.32 | 1.65 | 1.22 | 2.77 | 6.28 |
50 (3-reg.) | 75 | 1.22 | 4.30 | 15.10 | 2.15 | 166.16 | \(1\times 10^4\) |
50 (E.R.) | 87.2 | 1.20 | 4.77 | 18.94 | 2.02 | 291.78 | \(4\times 10^4\) |
100 (3-reg.) | 150 | 1.57 | 19.32 | 238.39 | 5.39 | \(3\times 10^4\) | \(2\times 10^8\) |
100 (E.R.) | 167.34 | 1.50 | 22.08 | 324.26 | 4.71 | \(7\times 10^4\) | \(1\times 10^9\) |