Table 4 The ratio of the expected number of measurements to obtain a sample from the noiseless distribution for p-QAOA relative to 1-ma-QAOA on an n vertex graph, assuming an average number of edges \(\langle m \rangle \) for graphs in the datasets.

From: Multi-angle quantum approximate optimization algorithm

n

\(\langle m \rangle \)

\(\epsilon _n =\epsilon _{\langle m \rangle } = 0.01\)

\(\epsilon _n = 0.01, \epsilon _{\langle m \rangle } = 0.05\)

\(p=1\)

\(p=2\)

\(p=3\)

\(p=1\)

\(p=2\)

\(p=3\)

8

14.4

1.05

1.32

1.65

1.22

2.77

6.28

50 (3-reg.)

75

1.22

4.30

15.10

2.15

166.16

\(1\times 10^4\)

50 (E.R.)

87.2

1.20

4.77

18.94

2.02

291.78

\(4\times 10^4\)

100 (3-reg.)

150

1.57

19.32

238.39

5.39

\(3\times 10^4\)

\(2\times 10^8\)

100 (E.R.)

167.34

1.50

22.08

324.26

4.71

\(7\times 10^4\)

\(1\times 10^9\)