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Interdisk spacing effect on resonant 
properties of Ge disk lattices on Si 
substrates
A. A. Shklyaev1,2*, D. E. Utkin1,2, A. V. Tsarev1,2, S. A. Kuznetsov1,3, K. V. Anikin2 & 
A. V. Latyshev1,2

The light reflection properties of Ge disk lattices on Si substrates are studied as a function of the disk 
height and the gap width between disks. The interdisk spacing effect is observed even at such large 
gap widths as 500 nm. The gap width decrease leads to the appearance of the reflection minimum 
in the short wavelength region relative to one originated from the magnetic and electric dipole 
resonances in individual Ge disks, thereby essentially widening the antireflection properties. This 
minimum becomes significantly deeper at small gap widths. The observed behavior is associated with 
the features of the resonant fields around closely spaced disks according to numerical simulation data. 
The result shows the importance of using structures with geometrical parameters providing the short-
wavelength minimum. This can essentially enhance their other resonant properties, which are widely 
used for applications, in particular, based on collective lattice resonances.

The efficiency of optoelectronic devices, such as solar cells and photodetectors, depends on their surface prop-
erties related to light reflection and transmission1,2. To reduce reflection, surface texturing and coating with 
antireflection dielectric films are usually used3,4. Recently, intensive research has been carried out on coatings of 
metal and/or dielectric particles as an alternative to continuous antireflection films5–9. Their action is based on the 
excitation of plasmonic10,11 or electromagnetic (EM) resonances12–15 in metal and dielectric particles, respectively. 
Compared to continuous films, the capabilities of antireflection coatings made of particles are wider. They can 
be less dependent on the EM radiation incidence angle5. In addition, they can be more broadband5,9, or, on the 
contrary, have a greater spectral selectivity6,8,16,17 due to using various resonance effects.

The characteristics of optical resonances are well studied for individual dielectric particles, while their arrays 
are used for practical applications. An experimental study of metal particle arrays revealed the effects of collec-
tive lattice resonances which provide laser generation17,18, biosensing applications19,20 and amplification of light 
radiation21–23. In addition to creating antireflection coatings, arrays of ordered dielectric particles can be used in 
optical waveguides24,25 and also as metasurfaces and metamaterials23,26. Particular attention is paid to the study 
of the interaction of resonant modes, excited in individual dielectric particles, with lattice modes. In this case, it 
is reasonable to expect that the role of lattice modes will increase with a decrease in the interparticle spacing as 
a result of an increase in the overlap of their fields and the appearance of diffraction effects27–29.

The comparison of light scattering efficiencies of metal (Ag, Au) and dielectric (Si) particles showed that metal 
particles are more efficient at their small sizes (less than 100 nm) and, accordingly, in the wavelength region below 
500 nm, whereas dielectric particles scatter stronger at their larger sizes in the region of longer wavelengths30. As 
for the comparison of coatings made of them, Si particle arrays on Si substrates provide a stronger light absorp-
tion, but in a narrower spectral region than Ag particle arrays7.

The EM radiation scattering by dielectric particles depends on their shape. In case of spherical and cubic 
particles, which are characterized by only one geometrical parameter, magnetic and electric dipole resonances 
are located at different wavelengths, and their mutual positions do not change when the particle size varies12,31. 
At the same time, for particles described by two geometrical parameters, e.g., diameter d and height h, as for 
disk-shaped particles, the spectral position of these resonances relative to each other depends on the aspect 
ratio (AR) determined as AR = h/d. Calculations have shown that wavelengths of the resonances coincide at 
AR ≈ 0.7631 for Si disks in the air. The AR value at which they coincide differs from that for disks on substrates 
depending on their optical properties8,14,32,33. When the scattering properties of magnetic and electric dipole 
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modes are balanced, their interference with the incident EM radiation most efficiently suppresses both reflected 
and transmitted waves7,33. Due to such destructive interference, the resulting EM radiation propagates in the 
substrate surface layer plane, which is important for the efficient operation of optoelectronic converters.

Another parameter affecting the light reflection and transmission by arrays of dielectric particles is the gap 
width (G) between them, on which the interaction between resonant EM fields strongly depends. The study of 
the G-related effect was carried out for dimer-forming particles34,35 and structures of several particles with dif-
ferent configurations36. The strongest interaction was observed in cases of collective lattice resonances8,27,37,38, 
which are well studied for plasmon resonances17,37. In case of dielectric particles, the collective lattice resonances 
are usually studied for structures with rather large G values. Nevertheless, the interaction of resonant modes at 
small G deserves a careful study.

In this work, we experimentally studied the effect of the interparticle spacing value in regular arrays on their 
reflection spectra. The particle coatings were shaped as a square lattice of Ge disks with a diameter of about 
200 nm on Si substrates. It is found that the influence of the G value on the light reflection is stronger than the 
effect of such parameter as AR, which usually dominates when EM radiation is scattered by disk-shaped particles. 
Moreover, at small G values, a deep reflection minimum is formed at wavelengths shorter than the spectral posi-
tion of the minimum originated from magnetic and electric dipole resonances generated in individual dielectric 
particles. The conditions for this minimum appear to be more suitable for using resonant effects for various 
applications, in particular, based on collective lattice resonances.

Experimental results and discussion
The method we use leads to fabricating particles which shape is not perfectly cylindrical (Fig. 1). The particle 
sidewalls are tilted about 15° relative to the vertical14, and the particles are shaped as truncated cones, as sche-
matically shown in Fig. 1e. Since the tilting angle is small, hereinafter, we will call them disks. The disk tilting 
angle is determined by the sidewall inclination of the opened windows in the electronic resist14. Another feature 
of the resist electron beam exposure is that the resulting disk diameter is somewhat larger when the disks are 
located close to each other (Fig. 1f). This occurs when the G value becomes less than 100 nm. This feature is less 
pronounced on the average disk diameter and consists more in the change of the disks shape. There is a slight 

Figure 1.   (a–c) SEM images of Ge disks with diameters of about 200 nm at their base and a height of about 
136 nm. The distance between the disk centers was 300, 500 and 700 nm in (a–c), respectively. The images are 
taken at the sample inclination angle of 45°. (d) SEM image of close-spaced Ge disks with a height of 90 nm 
obtained at a normal e-beam incidence angle. (e) Schematic cross-section of the structure. (f) Dependence of 
the disk diameter at their base on the G value.
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disk shape deviation from the truncated cone through a diameter increase at its base (Fig. 1a). The data points 
in Fig. 1f show the spread of disk diameters within each disk array, which is less than 1%. It can also be noted 
that the smallest reproducible gap width was about 50 nm. When trying to get disks separated by a smaller G, 
bridges appeared between the disks, as shown in Fig. 1d. Deposited Ge is polycrystalline14, consisting of clusters 
with a lateral size of up to 25 nm. The polycrystallinity of structure of the Ge disks is displayed as graininess in 
their surface images.

The reflection spectra of Si substrates with the Ge disk coatings contain two minima which exhibit a strong 
dependence on G (Fig. 2a). The spectral positions of the minima as a function of G is rather complicated (Fig. 2b). 
The shifts of the minima to shorter wavelengths at small G value (~ 50 nm) can occur due to the larger average 
diameter of the corresponding disks (Fig. 1f). The reflection minima for coatings with large G values are rather 
flat. This limits the accuracy of determining their spectral position.

A decrease of the G value is accompanied by an increase of the disk concentration on the surface. This leads 
to a decrease in the reflection level in the entire investigated spectral region (Fig. 2a). It is shown in Fig. 3 how 
this decrease occurs for the two reflection minima located near 400 and 800–900 nm. For 120 nm high disks 
(Fig. 3b), these data were obtained in a wide range of G values. The comparison of the surface filling factor by 
the disks (Ssub) with the reflection level in the minima shows that this decrease occurs faster than an increase in 
the disk concentration. At the same time, the reflection in these minima decreases differently upon G so that the 
reflection in the region of 400 nm has a stronger dependence than that in the region of 800–900 nm.

The stronger decrease in reflection as a function of decreasing G value in comparison with decreasing the 
surface area not covered with the disks, as shown in Fig. 3b, in the whole range of G values studied here, indicates 

Figure 2.   (a) Reflection spectra of Ge disk coatings with the disk height of 120 nm. The gap width values 
between the disks at their base are marked in the figure. (b) Spectral position of the two minima versus the G 
value for coatings with 120 nm high disks. The accuracy of determining the position of the minima at large G 
values is limited by their flat shape and was within ± 5 nm.

Figure 3.   (a–c) Dependences of the reflection level in two minima at wavelengths ~ 400 and 800–900 nm on 
the G value for arrays with disks 90, 120 160 nm high, respectively. Ssub in (b) is the fraction of the surface not 
occupied by Ge disks.
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the presence of the coupling effect for the resonant magnetic and electric moments of the disks even at such 
large inter-disk distances as 500 nm. For the array of Ge disks with a diameter of about 200 nm, the magnetic 
and electric dipole resonances are located in the region of 800–1000 nm, depending on the disk AR value14,31,32. 
The reflection minimum is observed when magnetic and electric resonances are balanced7,39 and, therefore, the 
reflection minimum in this spectral region is due to dipole resonances. The reflection minimum at wavelengths 
near 400 nm can be associated with the resonances involving quadrupole modes, the field of which is more 
localized around the disks compared to dipole modes. This difference in the resonance field localization can be 
the reason for the stronger reflection dependence on G at these wavelengths.

The reflection minimum depth at 800–900 nm is significantly decreased with increasing the disk height, as 
shown in Fig. 4a for small (~ 50 nm) and relatively large (~ 180 nm) G values. This behavior is consistent with 
the previously obtained results14,31 and associated with the AR dependence of spectral positions of magnetic 
and electric dipole resonances. Their positions approach each other with an increase in AR to ~ 0.814,31, which 
enhances the conditions arising at larger amplitudes of magnetic and electric dipole resonance modes. There is a 
factor that can reduce the scattering properties of Ge particles on Si. This is the resonance EM field leakage into 
the substrate, which was observed for SiGe particles40,41. This effect is stronger for particles with lower AR values9.

For the reflection minimum at wavelengths near 400 nm, the different dependence on AR is observed for 
different G values (Fig. 4b). Here, at low G values (~ 50 nm), the reflection minimum is even deeper for disks 
with relatively low AR values (< 0.5). This difference in the behavior of reflection minima as a function of AR 
indicates that the lattice effect is stronger in the region of shorter wavelengths. This occurs despite the fact that 
the reflection minimum in the region of longer wavelengths is determined by the magnetic and electric dipole 
resonance modes.

Numerical simulation
The electromagnetic simulations of Ge disk arrays on Si substrates in the configuration of Fig. 1e were performed 
with the finite difference time domain (FDTD) method using the commercial FullWave software package from 
RSoft-SYNOPSYS42. The material dispersion in FDTD simulations in general requires fitting an actual dispersion 
to a simple model as a series of Lorentzian expressions43. We used the built-in material editor that uses the known 
experimental data for Si, Ge and SiO2

44. In our case, the fitting in the wavelength range from 0.35 to 1.2 µm was 
carried out with a moderate number of Lorentz nodes (up to 6) to ensure a good fit to the experimental data of 
the real (n) and imaginary (k) parts of the refractive indexes (plots of the data used for Si and Ge are shown in 
the inserts in Fig. 5).

Typically, periodic structures are simulated by using the unit sell that contains a single disk with periodic 
boundary conditions in the structure plate and a perfectly matched layer (PML) with an absorbing boundary 
condition43 in the normal direction. The calculated reflection spectra for our case are shown in Fig. 5a for dif-
ferent gaps and a fixed disk diameter and height. Similar to experiments, the calculated spectra for the Ge disk 
arrays are normalized to the bare substrate spectra. It can be seen that the experimental and calculated spectra 
agree well at small G values and differ strongly at large G values. These discrepancies are due to the fact that this 
simulation corresponds to an infinitive periodic structure and a plane incident wave. However, the experimental 
setup uses a strongly divergent optical wave formed by an objective with a big NA = 0.65.

In order to simulate the conditions of the experimental setup, we use the cell with a large number of disks 
(21 × 21 = 441) and PML boundary conditions on all sides. This drastically increases the calculation time, but 
gives the results (see Fig. 5b) that quantitatively agree to our experiments. We also calculated the spectra for 
a low divergent incident wave (corresponding to an objective with NA = 0.1), which were very similar to the 
spectra (Fig. 5a) calculated for the infinite structure irradiated by a plane wave. This means that, when using an 
objective with a small NA, an additional minimum should appear in the reflection spectra for structures like 
ours with relatively large G values.

Figure 4.   Reflection level in two minima at wavelengths (a) 800–900 and (b) ~ 400 nm as a function of the disk 
height for two G values of about 50 and 180 nm.
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Since, according to the previous studies, the origin of the minimum in the long-wavelength region of the 
reflection spectra is associated with the excitation of magnetic and electric dipole modes12,14,31,32, the main goal 
of our numerical studies is to clarify the origin of the reflection minimum in the short wavelength region around 
400 nm. Just like in the experiments, two minima are observed in the calculated reflection spectra in the region of 
350–1200 nm (Fig. 5). The comparison of Fig. 5a,b shows that the depth of the minimum in the long-wavelength 
region of the reflection spectra is practically the same for the structures with the same G value, i.e., it does not 
depend on the incident wave divergence, as well as on the number of disks. At the same time, the incident wave 
divergence strongly affects the width of the minimum and its depth at large G values in the short wavelength 
region of the reflection spectra.

To clarify the origin of the resonance in the arrays under study, the spatial distribution of the electric and 
magnetic fields in the disk area for two wavelengths in the region of minima in the reflection spectra were cal-
culated. The exciting wave was considered to be normally incident upon the substrate surface with polarization 
along the X axis. For the reflection minimum in the long-wavelength region of the spectrum, it was found that 
the resonant field maximum is located inside the disk with the predominance of magnetic dipole mode (Hy). 
For the reflection minimum in the short-wavelength region, the field distribution in the disk area corresponds 
to the electric dipole and magnetic quadrupole modes (Fig. 6). In addition, the field maximum is concentrated 
in the space between the disks (Fig. 7). The maximum field amplitudes turn out to be greater than those of the 
fields in the long-wavelength region of the spectrum. Due to these factors, the minimum reflection in the short-
wavelength region becomes deeper.

The collective lattice resonances are practically not observed in the calculated spectra (Fig. 5b) in the case of 
a 21 × 21 disk array for the strongly divergent optical wave. These resonances arise (Fig. 5a) when a plane wave 

Figure 5.   Normalized reflectance for arrays with different numbers of disks: (a) infinite, (b) 21 × 21. The 
structure was irradiated with a plane wave in (a) and with a highly divergent Gaussian beam, which can be 
formed by an objective with NA = 0.65 in (b). The disks were 200 nm in diameter and 120 nm high. The G values 
are marked in the figures. The dispersions of n and k for Si and Ge used in the simulation are shown in the 
inserts in (a,b), respectively.

Figure 6.   Lateral distribution for the electric (a) and magnetic (b) field components at the wavelength of 
598 nm in the cross-section Z = 20 nm for G = 50 nm.
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is incident on an infinite lattice of disks in air (n = 1) as well as at the incidence of a low divergent wave on the 
21 × 21 disk array. The spectrum of the lattice with G = 50 nm does not contain a lattice resonance peak, since it 
is located in the shorter wavelength region. In this case, the calculated and experimental spectra are in a good 
agreement with each other. The resonance minima in the calculated spectra appear at large G values (Fig. 5a). 
It can be noted that the resonance minima are not narrow. This is due to the influence of the Si substrate, the 
refractive index of which significantly differs from that of the air surrounding the disks. As shown in45, in such 
cases, the resonance Q-factor is decreased. The low Q-factor of the structure of Ge disks on a Si substrate is 
also associated with a small difference in the refractive indices between the materials of the disks (Ge) and the 
substrate (Si), which causes the resonant mode field to leak into the substrate9.

In our experiment, a wide non-monochromatic EM radiation beam from a halogen lamp passed through the 
microscope objective with NA = 0.65 and is focused on the area with a diameter of about 80 μm. As a result, EM 
radiation falls onto the sample at different angles, which cover the range up to 20° (half of the objective aperture 
angle). It has been shown that the spectral position of the lattice resonance depends on the EM beam incidence 
angle28. Our numerical simulations show that the contributions from partial waves impinging at angles greater 
than 7° completely smooth out the effect of the collective lattice resonances, thus, making them invisible in our 
experiments. In addition, as the angle of incidence deviates from the normal one, the resonance Q-factor is 
decreased37. Despite the absence of narrow minima due to collective lattice resonances, their effect, neverthe-
less, manifests itself in a greater depth of the efficient broad minimum in the short-wavelength region of our 
spectra. This agrees to the results of38, which showed that the scattering maxima caused by lattice resonances 
can be located far from the strongest EM resonances of individual particles, which, in our case, are of the dipole 
type located in the region of relatively longer wavelengths.

Conclusion
In this study we found that the influence of the close spacing of dielectric disks in their lattices on the reflection 
spectra is observed even at such large gap widths between the disks as 500 nm. The gap width value effect turns 
out to be stronger in the short-wavelength region of the measured spectra. According to our numerical simu-
lations, this is due to the participation of quadrupole resonances and stronger resonant fields in the disk area 
caused by the close proximity of the disks. As a result, at small gap widths, the appearing reflection minimum 
in the short-wavelength region of the spectra is essentially deeper than the minimum in their long-wavelength 
region, which originated from magnetic and electric dipole resonances in individual dielectric disks. The stronger 
gap width value that influences the reflection in the short-wavelength region should be taken into account both 
in the manufacture of antireflection coatings and sensors which operation is based on the use of local resonant 
EM fields. As for collective lattice resonances designed for the conditions of the short-wavelength reflection 
minimum, they can be more efficient in their various applications, compared to those created for the conditions 
of magnetic and electric dipole resonances.

Methods
Ge disk fabrication.  Ge disk arrays were fabricated on Si substrates coated with a 5 nm thick thermal SiO2 
film, similar to how it was made in14. After a positive resist PMMA 950 K A4 film deposition on the substrate, it 
was exposed to a 20 keV electron beam at the aperture of 10 μm using the Raith PIONEER lithography system. 
Circle-shaped holes were formed by selective dissolving the PMMA films in the methyl isobutyl ketone and 
isopropyl alcohol (IPA) solution taken as 1:3, respectively, at room temperature for 30 s. The fabricated masks 
consisted of holes of about 200 nm in diameter arranged in a square lattice. The distance between hole centers 
was varied from about 250 to 700 nm. Ge films of different thicknesses were deposited onto the prepared samples 
by the Ge evaporation from a Knudsen cell in an Omicron ultrahigh vacuum system. To obtain Ge disk arrays, 
excess Ge was removed from the sample surface through the lift-off process in an ultrasonic bath with acetone 
for 1 min.

Methods of characterization.  The shape of Ge disks after their formation and the distance between them 
were determined using the PIONEER lithography system (in the microscope mode) or a scanning electron 

Figure 7.   Lateral distribution for the electric (a) and magnetic (b) field components at the wavelength of 
598 nm in the cross-section Y = 0 for G = 50 nm.
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microscope (SEM) manufactured by Hitachi (SU 8020). The reflection spectra at a normal light incidence were 
measured with the microscope-spectrophotometer MSFU-K supplied with a 40 × objective (WD = 0.6  mm, 
NA = 0.65). This optical setup collects reflected light within the objective aperture angle α = 40.5°. The sample 
position was shifted about 0.2 mm relative to the objective focal plane for the irradiation of a wide (~ 80 μm) 
area containing a large number of Ge disks. The reflection spectra for Ge disk arrays were normalized to those 
of bare substrates.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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