Table 1 List of symbols used in this paper.
From: Chemical property prediction under experimental biases
Symbol in PROBLEM SETTING | Description |
---|---|
\(\mathscr {G}\) | A large chemical space |
\(\mathscr {D}^\text {train} = \{(G_i,y_i){\}_{i=1}^N}\subset \mathscr {G}\) | Training dataset of N molecules |
\(\mathscr {D}^\text {test} = \{G_i{\}}_{i=N+1}^{N+M}\) | Test dataset of M molecules |
\(G_i =(\mathscr {V}_i,\mathscr {E}_i, \sigma _i)\in \mathscr {G}\) | Molecular graph |
\(\mathscr {V}_i\) | Set of graph nodes of \(G_i\) |
\(\mathscr {E}_i \subseteq \mathscr {V}_i \times \mathscr {V}_i \) | Set of edges of \(G_i\) |
\(\sigma : \mathscr {V}_i \cup \mathscr {E}_i \rightarrow \mathscr {L}\) | Node and edge label function |
\(\mathscr {L}\) | Set of node and edge labels |
\(y_i \in \mathbb {R}\) | Target chemical property value       |
Symbol in METHODSÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â | Description |
\(\mathbf {m}_v^t \in \mathbb {R}^D\) | Message of node v in layer t |
\(\mathbf {h}_v^t \in \mathbb {R}^D\) | Feature vector of node v in layer t |
\(d_i \in \{0,1\}\) | Domain of \(G_i\) |
\(m_t: (\mathbf {h}_v^t,\mathbf {h}_u^t,\sigma (u,v))\rightarrow \mathbb {R}^D\) | GNN message function |
\(a: \mathbb {R}^D\rightarrow \mathbb {R}^D\) | GNN activation function |
\(u_t: (\mathbf {h}_v^t,\mathbf {m}_v^t)\rightarrow \mathbb {R}^D\) | GNN update function |
\(r: \{\mathbf {h}_v^T\}\rightarrow \mathbb {R}^D\) | GNN graph-level readout function |
\(f: \mathscr {G}\rightarrow \mathbb {R}\) | Property predictor |
\(f_{\text{ F }}: \mathscr {G}\rightarrow \mathbb {R}^D\) | Feature extractor |
\(f_{\text{ L }}: \mathbb {R}^D\rightarrow \mathbb {R}\) | Label predictor |
\(f_{\text {IPM}}:\mathbb {R}^D\times \mathbb {R}^D\rightarrow \mathbb {R}\) | Internal probability metric |
\(f_{\text{ W }}: \mathbb {R}^D\rightarrow \mathbb {R}^2\) | Weight estimator |
\(\pi : \mathscr {G}\rightarrow [0,1]\) | Propensity score function |
\(\ell : \mathbb {R}\times \mathbb {R} \rightarrow \mathbb {R}^{\ge 0}\) | Regression loss function |
\(c: \{0,1\}\times [0,1]\rightarrow \mathbb {R}^{\ge 0}\) | Classification loss function |