Table 6 Analyzed kinetic models.
Parameter | Model analyzed | Equation used | Linearized equation | Kinetic parameters obtained | R2 value | |
---|---|---|---|---|---|---|
COD | 1st order | \(\frac{{ - {\text{d}}s}}{{{\text{d}}t}} = \frac{Q}{v}\left( {s_{0} - s_{e} } \right) - k_{1} s_{e}\) | \(\frac{{s_{0} }}{{s_{e} }} - 1 = k_{1} HRT\) | K1 = 1.213 | – | 0.761 |
Grau 2nd order Model | \(\frac{{ - {\text{d}}s}}{{{\text{d}}t}} = \frac{{k_{2} xs_{e} 2}}{{s_{0}^{2} }}\) | \(\frac{{s_{0} }}{{s_{0} - s_{e} }}HRT = {\raise0.7ex\hbox{${HRT - S_{0} }$} \!\mathord{\left/ {\vphantom {{HRT - S_{0} } {k_{2} x}}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${k_{2} x}$}}\) | – | Ks = 10–05 | 0.982 | |
Modified Stover-Kincanna model | \(- \frac{{{\text{d}}s}}{{{\text{d}}t}} = \frac{Q}{v}\left( {\frac{{s_{0} - s_{e} }}{{s_{0} }}} \right) = \frac{{U_{M} \frac{{Qs_{0} }}{v}}}{{k_{B} + \frac{{Qs_{0} }}{v}}}\) | \(\frac{v}{{Q\left( {s_{0} - s_{e} } \right)}} = \frac{{k_{B} v}}{{U_{M} s_{0} Q}} + \frac{v}{{U_{M} }}\) | KB = 0.35 | UM = 1.73 | 0.978 | |
Monod Model | \(- \frac{{{\text{d}}s}}{{{\text{d}}t}} = \frac{Q}{v}\left( {\frac{{s_{0} - s_{e} }}{{s_{0} }}} \right) = \frac{{U_{M} \frac{{Qs_{0} }}{v}}}{{k_{B} + \frac{{Qs_{0} }}{v}}}\) | \(\frac{vx}{{Q\left( {s_{0} - s_{e} } \right)}} = \frac{{k_{s} }}{{ks_{e} }} + \frac{1}{k}\) | K = 0.062 | Ks = 0.073 | 0.991 |