Table 4 Clarification of entrenched control constraints.
Symboles | Name | Formule | Default value |
---|---|---|---|
\(A\) | Unsteadiness parameter | \(A = \frac{\xi }{d}\) | 0.3 |
\(\lambda\) | Williamson parameter | \(\lambda = \zeta U_{w} \sqrt {\frac{{2{\text{b}}}}{{\nu_{f} }}}\) | 0.1 |
\(P_{r}\) | Prandtl number | \(P_{r} = \frac{{\nu_{f} }}{{\alpha_{f} }}\) | 6.5 |
\(\phi\) | Volume fraction | – | 0.18 |
\(K\) | Porous medium parameter | \(K = \frac{{\nu_{f} \left( {1 - \xi t} \right)}}{bk}\) | 0.1 |
\(S\) | Suction/injection parameter | \(S = - V_{w} \sqrt {\frac{1 - \xi t}{{\nu_{f} { }b}}}\) | 0.1 |
\(N_{r}\) | Thermal radiation parameter | \(N_{r} = \frac{16}{3}\frac{{\sigma^{*} {\yen}_{\infty }^{3} }}{{\kappa^{*} \nu_{f} (\rho C_{p} )_{f} }}\) | 0.3 |
\(\Lambda\) | Velocity slip | \(\Lambda = \sqrt {\frac{b}{{\nu_{f} \left( {1 - \xi t} \right)}}} N_{w}\) | 0.3 |
\(B_{i}\) | Biot number | \(B_{i} = \frac{{h_{f} }}{{k_{0} }}\sqrt {\frac{{\nu_{f} \left( {1 - \xi t} \right)}}{b}}\) | 0.2 |
\(E_{c}\) | Eckert number | \(E_{c} = \frac{{U_{w}^{2} }}{{(C_{p} )_{f} \left( {T_{w} - T_{\infty } } \right)}}\) | 0.2 |
\(B_{r}\) | Brinkman number | \(B_{r} = \frac{{\mu_{f} U_{w}^{2} }}{{k_{f} \left( {{\yen}_{w} - {\yen}_{\infty } } \right)}}\) | 5.0 |