Table 4 Clarification of entrenched control constraints.

From: Dynamics of radiative Williamson hybrid nanofluid with entropy generation: significance in solar aircraft

Symboles

Name

Formule

Default value

\(A\)

Unsteadiness parameter

\(A = \frac{\xi }{d}\)

0.3

\(\lambda\)

Williamson parameter

\(\lambda = \zeta U_{w} \sqrt {\frac{{2{\text{b}}}}{{\nu_{f} }}}\)

0.1

\(P_{r}\)

Prandtl number

\(P_{r} = \frac{{\nu_{f} }}{{\alpha_{f} }}\)

6.5

\(\phi\)

Volume fraction

–

0.18

\(K\)

Porous medium parameter

\(K = \frac{{\nu_{f} \left( {1 - \xi t} \right)}}{bk}\)

0.1

\(S\)

Suction/injection parameter

\(S = - V_{w} \sqrt {\frac{1 - \xi t}{{\nu_{f} { }b}}}\)

0.1

\(N_{r}\)

Thermal radiation parameter

\(N_{r} = \frac{16}{3}\frac{{\sigma^{*} {\yen}_{\infty }^{3} }}{{\kappa^{*} \nu_{f} (\rho C_{p} )_{f} }}\)

0.3

\(\Lambda\)

Velocity slip

\(\Lambda = \sqrt {\frac{b}{{\nu_{f} \left( {1 - \xi t} \right)}}} N_{w}\)

0.3

\(B_{i}\)

Biot number

\(B_{i} = \frac{{h_{f} }}{{k_{0} }}\sqrt {\frac{{\nu_{f} \left( {1 - \xi t} \right)}}{b}}\)

0.2

\(E_{c}\)

Eckert number

\(E_{c} = \frac{{U_{w}^{2} }}{{(C_{p} )_{f} \left( {T_{w} - T_{\infty } } \right)}}\)

0.2

\(B_{r}\)

Brinkman number

\(B_{r} = \frac{{\mu_{f} U_{w}^{2} }}{{k_{f} \left( {{\yen}_{w} - {\yen}_{\infty } } \right)}}\)

5.0