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A model for simulating emergent 
patterns of cities and roads 
on real‑world landscapes
Takaaki Aoki1*, Naoya Fujiwara2,3,4,5,6, Mark Fricker7 & Toshiyuki Nakagaki8,9

Emergence of cities and road networks have characterised human activity and movement over 
millennia. However, this anthropogenic infrastructure does not develop in isolation, but is deeply 
embedded in the natural landscape, which strongly influences the resultant spatial patterns. 
Nevertheless, the precise impact that landscape has on the location, size and connectivity of cities is a 
long-standing, unresolved problem. To address this issue, we incorporate high-resolution topographic 
maps into a Turing-like pattern forming system, in which local reinforcement rules result in co-evolving 
centres of population and transport networks. Using Italy as a case study, we show that the model 
constrained solely by topography results in an emergent spatial pattern that is consistent with Zipf’s 
Law and comparable to the census data. Thus, we infer the natural landscape may play a dominant 
role in establishing the baseline macro-scale population pattern, that is then modified by higher-level 
historical, socio-economic or cultural factors.

Across the surface of the earth throughout human history, civilisations have developed from small, scattered 
settlements into substantial agglomerations of towns and cities that are linked by increasingly sophisticated road 
networks. The theory about why populated places and transport networks arise at certain geographical locations 
in the natural environment, and what drives the massive variation in spatial infrastructure are long-standing 
problems dating from the seminal work of de la Blache1. These fundamental questions still attract growing interest 
nearly a century later, because the resultant geospatial distribution of cities and road networks have major impacts 
on substantive issues in contemporary society such as urbanisation, traffic congestion, rural depopulation, land 
use, food supply, and ultimately migration.

In the 1930s and 40s, Central Place Theory emerged as an explanation for the observed hierarchical urban 
organisation from conceptual models advanced by Christaller2 and Lösch3, who argued that cities are located 
hierarchically on a regular 2-D hexagonal lattice as a result of differing population thresholds for viability of 
particular goods or services, offset against maximum travel distances4,5. In the 50s, Isard was instrumental in 
combining these ideas with earlier work on agricultural land use6, and industrial location7, in an attempt to 
construct general equilibrium models within a regional science framework8. Further location-theory models 
were subsequently developed within the New Economic Geography framework, which integrated spatial devel-
opment into economic models9,10, although these also have links back to von Thünen11. The critical argument 
posited by these models is that locations with high or low populations emerge intrinsically without any external 
environmental differences, with behaviour reminiscent of Turing-type reaction-diffusion pattern formation12. 
Such self-organising spatio-temporal pattern formation is common in both physical13 and biological14 systems, 
where structure can spontaneously emerge as a result of the collective behaviour of many agents following simple 
local rules, without centralized planning or control.

Nevertheless, in these theories, the transport network is typically considered to exist a priori rather than 
emerge as product of the developing human society. Thus, in most studies, the transport system is treated as 
an exogenous factor given by external datasets detailing existing road, highway, and railway infrastructure15–19. 
However, in reality, the transport system develops in concert with shifts in human population20,21, and iteratively 
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feeds into the overall dynamics of spatial pattern formation, particularly over longer timescales. Furthermore, 
transport routes are very sensitive to the natural landscape, which is intuitively well recognised, but absent from 
most models.

Thus, in this paper, we go back to the primary question of the impact of natural landscape on patterns of 
population, using a model where both cities and roads are allowed to emerge from dynamical Turing-like pat-
tern formation, and the only a priori constraints are based on physical geography. In particular, we consider 
that mountains, hills, rivers, lakes, and coastlines are likely to have a substantial effect on both the population 
distribution and the transport network, but are rarely considered quantitatively19,22. We capture these elements by 
inclusion of high-resolution topographic maps to sculpt the surface on which the model unfolds by progressively 
transforming the underlying space from the typical idealized isotropic ‘flatland’ to the real landscape. The result-
ant Landscape-Transport-Population (LTP) reinforcement model has three key elements: (i) Detailed landscape 
topography at 90 m resolution; (ii) The effective transport distance across the real-world landscape; and (iii) 
Turing-like pattern formation driven by flow-based reinforcement for population distributions. Our approach 
draws on our previous works23–27 where a biologically-inspired, current-reinforcement rule can construct realistic 
transport networks between food-supply points under physical and physiological constraints, and the principle 
of co-evolution of nodes and links that dynamically organize scale-free networks via a diffusion process28,29.

Overview of the dynamical model
A schematic illustration of how the dynamical model evolves across a landscape is shown in Fig. 1a. Growing 
centres of population are connected via transport routes across land, rivers, lakes or sea. Preferential transport 
routes between locations are calculated by gradient-based least-cost path analysis on topographic GIS maps, 
taking into account the costs of moving over rough terrain or water bodies (see Methods for details). Given the 
effective transport distance of such a route between each pair of locations, i and j, we introduce a connectivity 
variable that weights the amount of traffic and trade. We model development of this transport connectivity 
using a mass-action formula, which originated from chemical reaction processes and has been applied to other 
population and social dynamics30:

(1)wij(t + 1)− wij(t) = ǫ
[

xi(t) · xj(t)− f (rij)wij(t)
]

.
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Figure 1.   (a) Schematic illustration of dynamical pattern formation in the LTP-reinforcement model where 
populated places and their inter-connections emerge naturally across the landscape. Transport links following 
least-cost paths across the landscape are strengthened between locations with large populations, whilst well-
connected centres in turn tend to grow to a greater extent. (b,c) Schematic diagram of the LPT-reinforcement 
model (b) and a counterfactual, ’Geographical Determinism’ model with no reinforcement of the transport 
network (c).
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Thus the change in transport connectivity is an increasing function of the popularity (normalised population) of 
the end-point locations given by variables xi and xj and offset by the increasing cost of transport with distance. 
The dependence on distance is given by f (r) = r

R exp(r/R) , where R represents the typical length scale of trans-
portation in the epoch under consideration. This specific form of f(r) originates from the distance deterrence 
factor in spatial interaction models31–34. The Eq. (1) leads a global equilibrium w∗

ij = xixj/f (r) when xi is fixed. ǫ 
controls the time-scale of the evolution of this connectivity.

Next, we formulate the coupled hypothesis that centres of population will develop at important transport 
intersections that reflect the network centrality of each location. Here we use PageRank centrality35 as a well-
characterised estimator of the relative popularity of location i, according to Eq. (2):

where the transition probability Tij(t) from j to i is given by wij(t)
∑

k∈Nj
wkj(t)

 and N is the number of locations. The 

first term sums the incoming and outgoing flows to location i from connected locations via the network, giving 
preference to locations with strong transport connectivity wij(t) . The second term models global dispersion 
driven by non-network factors, to ensure the agricultural hinterland around the cities remains populated. The 
balance between these two terms is controlled by parameter d. This popularity xi accumulates the probability of 
visiting location i via a diffusion process on the weighted network, with all probabilities summing to unity. The 
actual population Xi is determined by scaling this normalised variable by the total population from the census 
data (see Supplementary Information 3.7 for details).

The initial state of the system variables xi ,wij is another important factor which determines the final outcome 
of the simulation. In the following simulation, we firstly do not provides any specific information on the initial 
state which is set to be nearly homogeneous with small random fluctuations (see Supplementary Information 
3.4 for full details). Later, we set the initial state to be similar to the situation in the Roman era and discuss on 
the effect of the specific initial condition on the temporal evolution of the system.

Figure 1b summarises the coupled system of Eqs. (1) and (2) schematically. The natural landscape is incor-
porated into the model only through the impact on the least-cost transport distance rij . The resultant transport 
connectivity wij then interacts inter-dependently with the popularity at each location xi . In other words, as 
populated places develop or decay, the connections among them are restructured to meet current needs. This 
network restructuring causes further expansion or contraction of populated places. Although the model has 
only three parameters: R, ǫ and d (see Supplementary Information 3 for full details), the reinforcement dynam-
ics exhibit rich behaviour.

Results
Impact of varying landscape scenarios on population distribution.  The impact of landscape fac-
tors on the emergent pattern of population distributions and transport networks was explored for four scenarios 
using Italy as an exemplar. The underlying space was changed from: (i) an idealised isotropic ‘Flatland’, with no 
geographical features and no boundaries (Fig. 2a); (ii) imposition of the Mediterranean Sea and Italian ‘Coast-
line’ (Fig. 2b); (iii) inclusion of terrestrial topography to give ‘Elevation’ (Fig. 2c); and (iv) addition of ‘Water 
Bodies’ such as rivers and lakes which augment the transport possibilities (Fig. 2d). In the isotropic ’Flatland’ 
scenario the underlying space is uniform and symmetric with periodic boundary conditions. Nevertheless, a 
regularly-spaced, lattice-like pattern of populated places, with roughly equal population, still spontaneously 
emerges as a result of the reinforcement dynamics in the model (Fig. 2e). Each populated place also acts as a hub 
in an almost radially symmetric traffic network (Fig. 2i).

This phenomenon of pattern formation is widely seen in reaction-diffusion systems36. Linear stability analysis 
of the isotropic state reveals that an Eigen mode with a finite wavelength initially becomes unstable as the control 
parameter d is varied above a critical threshold ( dc =0.8), and the mode then develops to give the observed pat-
tern (see Supplementary Information 7 for the details).

By adding landscape factors, the population and transport networks show more complex structure. In the 
’Coastline’ scenario, uniformity and symmetry are broken, with the sea providing a major barrier to movement, 
although the land is still flat. The emergent pattern now deviates from a perfect lattice, but still generates a rea-
sonably regular array of similar sized cities (Fig. 2f), with some preferential strengthening of transport links to 
nearest neighbours (Fig. 2j). In the Elevation scenario, the least-cost paths for transport are affected by the local 
gradient of the landscape, and trigger a significant shift away from a regular lattice with substantial variation in 
population size and location (Fig. 2g). The transport network is also more complex with hubs emanating from 
the major cities on the northern plane, supplemented by coastal highways and occasional trans-Alpine routes 
(Fig. 2k). Finally, inclusion of ’Water bodies’ permits transport across rivers, lakes, and seas, which previously 
acted as barriers in the other scenarios, and opens up the possibility of marine transport along the coast (Fig. 2l), 
that further modifies the population distribution (Fig. 2h).

Comparison of the model output with the 2011 census data.  We then asked whether there are 
any similarities between the emergent patterns from the model and actual data on populations and transport. 
Figure 3 shows comparison with the 2011 population census data, and GPS-tracked traffic data at two admin-
istrative levels (see Methods for the details of these datasets). The aggregate population and traffic are shown at 
the Regione level in Fig. 3a, b, respectively. There is substantial variation in both the census population and traffic 
data between regions, but somewhat surprisingly, much of this heterogeneity is faithfully captured by the LTP 

(2)xi(t + 1)− xi(t) = d
∑

j∈Ni

[

Tij(t)xj(t)− Tji(t)xi(t)
]

+ (1− d)

(

1

N
− xi(t)

)

,
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model, even though the model only has information of the landscape. Nevertheless, the match is not perfect, 
with the most obvious differences in Lombardia and Campania, which are under-estimated, and Apulia which 
is over-estimated.

At higher spatial resolution, the population at Provincia level is shown in Fig. 3c–f for the four different 
landscape scenarios. Error bars depict the standard deviation ( n = 64 ) with different initial conditions (see 
Supplementary Information 3.4 for details). The Flatland scenario leads to substantially different populations in 
each Provincia at each realisation, apparent from the large error bars, and gives little overall match to the census 
data (Fig. 3c). Inclusion of more landscape features progressively reduces the variance at each location, stabilises 
the output, and improves the match between histogram profiles from simulation and census (Fig. 3d–f). Much of 
this improvement arises from inclusion of elevation (Fig. 3e). However, the additional transport routes available 
in the ‘Water Bodies’ scenario, allow increased growth of Milan (MI), for example (Fig. 3f), and the population 
of other major cities, such as Turin and Palermo match the census well. Nevertheless, populations of Rome and 
Naples are under-estimated, whilst those in Alessandria, Modena, Pisa, and Foggia are over-estimated. The com-
parison for traffic data at the Provincia level also showed a similar improvement with the addition of landscape 
factors (Figure S5 in Supplementary Information 5).

It is noted that changes in response to the underlying landscape reflect the response of the complete system 
of cities linked by adaptive connections, not just cities in isolation. For example, a population increase in Naples 

Figure 2.   The effect of landscape factors on emergent geospatial patterns of both human population 
distribution and the interconnecting transport network. The underlying space is changed from an idealised 
flatland condition (a) to a more realistic one by sequentially adding coastlines (b), elevation (c), and water 
bodies (d), using Italy and its surrounding regions as a case study. By adding these factors, the emergent 
population pattern produced by the model shifts from a lattice-like Turing pattern with regular population sizes 
to a markedly heterogeneous distribution (e–h). In parallel, the transport network also emerges between centres 
of population, as depicted by the net traffic Ŵ(x) passing through each location (see Supplementary Information 
3.8 for details) (i–l).
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induces not only population changes in neighboring places, but also the changes in the connections around it. 
These changes induce further changes at distant locations, and propagate over the entire network in subsequent 
time steps. Therefore, the effect of the landscape has to be interpreted through its impact on the entire system, 
not as separate local influence on individual cities.

To evaluate the match between these distributions quantitatively, we used the Kullback–Leibler (KL) distance37 
from the simulation distribution (q) to the census data (p), according to Eq. (3):

where p, q are the normalized spatial distribution such that 
∑

i p(i) =
∑

i q(i) = 1 . The index i of p, q indicates 
the individual Provincia or Regione, not the size rank. The KL distance progressively decreases as the landscape 
factors are included for both the population estimates (Fig. 3g) and traffic predictions (Fig. 3h). The Water Bodies 
scenario gives a total improvement of 72% for population and 62% for traffic. This improvement is also confirmed 
by other metrics, such as Pearson’s correlation and cosine similarity, which test slightly different aspects of the 
distributions (see Supplementary Information 6 for the details).

Counterfactual comparison without dynamic reinforcement.  One explanation for these results 
might be that the population pattern simply reflects the external landscape alone—an idea reminiscent of geo-
graphical determinism38,39, whereby the local population would essentially match the slope metric. However, we 
argue that the observed pattern could require the reinforcement dynamics linking population aggregation and 
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∑
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Figure 3.   Quantitative comparison between the population and traffic datasets for Italy and the LTP simulation 
results for different landscape scenarios. (a) Population distribution from the 2011 census data for Italy (red) 
and the LTP simulation (blue) when aggregated at the Regione level for the ’Water bodies’ scenario. (b) GPS-
tracked traffic distribution from OpenStreetMap for Italy (red) and the LTP simulation (blue) when aggregated 
at the Regione level for the ’Water bodies’ scenario. (c–f) Comparison in population distribution as in (a), but 
at Provincia level for each scenario. Error bars depict the standard deviation that comes from the 64 simulation 
runs for each scenario. (g,h) The Kullback–Leibler (KL) distance from the simulation data to the census 
population (g) and the GPS-tracked traffic datasets (h) for Provincia-level distributions. The error bars are the 
same as in (c–f).
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transport connectivity. To clarify this argument, we introduce a counter-factual scenario termed Geographical 
Determinism (Fig. 1c). In this scenario, the underlying landscape conditions are the same as the Water Bodies 
scenario, but with no transport reinforcement dynamics (see Supplementary Information 4 for details). The 
Geographical Determinism model yields some variation in population size, but only within a narrow range 
(Fig.  4). In contrast, the LTP simulation show a strongly heterogeneous distribution, in agreement with the 
census data (Fig. 4). It is noted that this result does not reject geographical determinism in general. Instead, we 
argue that the reinforcement dynamics provides an alternative mechanism that could be a contributing factor 
to the heterogeneity.

The fat-tailed distribution of population is already well-known as Zipf ’s law (Fig. 4)40, and its potential origin 
extensively investigated41–44. The LTP model provides an alternative mechanism that could be a contributing 
factor to the heterogeneity: we already showed that roughly equal-sized populated places emerge in an idealized 
‘flatland’ scenario but shifted to be strongly heterogeneous by inclusion of the underlying real-world landscape in 
the dynamical model, while the landscape on its own was insufficient. Thus, the combination of the heterogeneity 
of the underlying landscape and the intrinsic reinforcement dynamics in the model could be a potential driver 
of a fat-tailed population distribution.

Inclusion of historical population estimates improves model predictions.  We then explore the 
effects of including two elements of “history” in the model. First, we use the population distribution of Roman 
cities45,46 to specify the initial conditions (Fig. 5a). Second, we vary the characteristic transport distance R in 
the cost function (Fig. 5d) to reflect changes in the transport system for each historical age (see Methods and 
Supplementary Information 1 for details). In the Roman era, the predominant transport modes on land were 
limited to walking, ox-carts or horse-drawn carriages. We assume that such a transport system has a shorter 
characteristic distance R (= 8 km) than that of a contemporary motorized society (R = 40 km), and that sailing is 
comparably more efficient than movement on land. We therefore follow the evolution of the population with the 
ramped increase in R and the resultant variation in least-cost path parameters (Fig. 5d). At an intermediate state 
with R = 24 km, the model predicts many medium-sized towns and the beginning of larger cities on the north-
ern plain (Fig. 5b). In the final state with R = 40 km, some of these populated places merge into several larger 
metropolises, particularly in north Italy, at the expense of locations that were dominant in previous epochs, but 
have subsequently declined (Fig. 5c).

Figure 6 compares the intermediate predicted population distributions up to R = 24 km with the empirical 
population distribution estimates from 1300 to 186147 and the census data for 1911. These are aggregated at the 
Provincia level using boundaries existing in 1911 following re-unification, as these are available in digital format 
for the whole Italian Peninsula. As shown in Fig. 6, much of the spatial heterogeneity is faithfully captured by the 
model across these ages. The quantitative comparison shows that the KL distance remained around 0.2 during 
this period (Fig. 6i), with the notable exception of 1400 when city populations were drastically reduced by the 
plague pandemic.

The effect of including these historical elements was evaluated by the improvement of KL distance (Fig. 5e, 
f). Compared to initial near-isotropic starting conditions, the constrained historical evolution gave a further 
improvement of 16%, which provides a quantitative measure of the extent that integration of these historical 
pathways has had an impact on contemporary society.

Discussion
Large-scale regional pattern formation of cities and transport networks is a key theme of long-standing impor-
tance in the study of human civilization. Here we present a dynamical model in which populated places and 
their connections co-evolve inter-dependently, and we used this to examine how the emergent patterns are 
influenced by the detailed topographical landscape. The model incorporates spatial scales from tens of meters 
(from topographic maps) to thousands of km (the overall modelling domain) and is demonstrated for Italy as a 
test case. We show that in an idealized ‘flatland’ scenario, a regular pattern of cities with roughly equal population 
spontaneously emerge, consistent with the arguments set out in Central Place Theory by Lösch3, and observed 
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in the initial NEG models9. However, inclusion of the natural landscape adds considerably more richness  
(heterogeneity) to the emergent patterns of both population distribution and the transport network. The resultant 
patterns are broadly comparable to contemporary population census data and GPS-tracked traffic data, including 
emergence of a fat-tailed distribution of population density, as seen in the empirical Zipf ’s law. We consider it 
remarkable that such a minimal model can explain complex geospatial patterns not only of population, but also 
of transport networks. Thus, we would argue that a major contribution of this paper that it reveals the importance 
of the natural landscape on human civilization with the phenomenological model of co-evolving dynamics of 
cities and roads, both qualitatively and quantitatively using information-theoretic measures referenced to the 
actual census data.

To set these results in context, we believe there are several important differences in this modelling approach to 
those adopted in recent urban economic models. First, our model has extremely few parameters, whose values are 
set completely independently from the actual population data. In comparison, existing models include detailed 
micro-economic processes, with the aim of providing as realistic an output as possible to inform policy, planning 
and investment. This results in elaborate systems with a huge number of location-specific fudge factors15, such 
as attractivity17, local amenity16,48, or local productivity22, which are then tuned by calibration using the actual 
population data itself.

Second, our model only uses landscape datasets as a priori conditions to reproduce the spatial patterns of 
population. In contrast, in addition to calibration against the population data itself, alternative realistic models 
incorporate a wide range of external datasets, including inter alia employment levels, economic growth, birth 
and death rates, bilateral trade flows income and demographic characteristics15,16,49. Nevertheless, the natural 
landscape itself is not included directly in most models, or plays a very limited role. For example, in a few studies 
landscape factors have been used to validate the calibrated local amenity48, as a ruggedness parameter in coun-
terfactual simulations22, or to evaluate the local suitability19 by elevation or slope in land-use allocation within 
cellular-automaton based models18,19.

Third, in our model, the transport infrastructure is not given a priori, but develops inter-dependently with 
shifts in population. In existing models, contemporary rail, road and water transport networks are often supplied 
exogenously and the accessibility of different locations are imposed a priori and only vary to a limited extent, 
for example when modelling congestion in intra-urban models19,50,51. The spatial pattern of these networks 
already provides a strong guide to where populated places are located. This is important when making short 
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term predictions on local development relevant to policy and investment, but does not address the origin of 
these networks over longer time periods17,52.

In summary, in contrast to existing models, which involve thousands of tunable parameters and detailed 
external datasets to fit population data as precisely as possible, here we adopted an opposite minimal approach. 
The system provides an abstract representation that captures the co-evolution rules governing emergence of 
populated places and their interconnections, when constrained solely by the topographic landscape without any 
other external datasets. The true population is only used to compare with the output of the model to evaluate its 
performance, not for calibrations. Thus, our modelling framework provides a straightforward explanation as to 
why some locations become so populated and others do not, by the direct influence of topographic landscape.

We next show that landscape on its own is not sufficient to explain the population distribution as a form 
of geographical determinism, but requires the inter-dependent dynamical feedback between population and 
the transport network emerging in parallel. Such co-evolution has been highlighted as a potential driver of 
self-organizing system for adaptive biological and social networks53, including transportation networks in an 
idealized city54 or region55,56. In general, the reinforcement by such adaptive spatial connections represents a 
macroscopic, ‘rich-gets-richer’ effect in social dynamics. Several positive feedback effects, such as economy of 
scale, or agglomeration10 are well established in spatial economics, whilst other feedback mechanisms have also 
been incorporated in spatial interaction models57–59. In particular, the recursive iteration feedback employed 
by Wilkinson et al.60, embodies remarkably similar principles to the proposed LTP reinforcement model for 
transport dynamics.

It is notable that de la Blache1 also considered the significance of historical factors on the subsequent develop-
ment of the population distribution, in addition to the central role of the natural landscape. We have begun to 
explore these possibilities in the model, by incorporating aspects of historical evolution, such as the estimated 
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Figure 6.   Comparison between the population distribution during the period 1300–1911 and the simulation 
output from intermediate levels of R. (a–g) As shown in Fig. 5d, the least-cost distance and characteristic 
transport distance R were varied during the simulation. The intermediate states of the model up to R = 22 km 
were compared with the estimated population distribution from city population data during the period  
1300–186147 (see Methods for the details of the estimates). The population distributions from both the 
simulation output and the estimated data are aggregated by Provincia using the 1911 regions, as digital shape 
data is available at this time point. Red bars indicate the estimated populations and blue bars are the simulation 
output from the Water Bodies scenario. (h) Population distribution at 1911 for Italy (red) and the LTP 
simulation (blue) at R = 24 km when aggregated at Provincia level in 1911. (i) Quantitative comparison using 
the KL distance from the model outputs at intermediate values of R to empirical data shown in (a–h).
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populations in ancient Roman cities as the starting condition. In the context of dynamical systems theory, the 
inclusion of historical elements is related to the issue of ‘multistability’: the model has multiple possible equi-
librium states as the result of its evolution, whilst there is only one actual realisation in history. In the model, 
the initial condition determines which one of the possible states is realised in the simulation. In other words, 
the past condition can affect the future state by selection from multiple possible outcomes. Compared to the 
average from multiple runs using noisy near-isotropic initial conditions, starting with the “historical” condition 
from the ancient Roman period selects a better final outcome to the contemporary census dataset in a single 
model run (Fig. 5).

There are several limitations of the model that need to be considered carefully. The model appears to work 
well for Italy, which has natural boundaries set by the Mediterranean Sea and the Alps to the North. However, 
we would expect the population outside the simulation region to influence locations inside, but these are not 
captured in the scope of the model. Scaling the model up to a continental or global level to avoid these edge arte-
facts is technically plausible, but currently computationally prohibitive unless one adopts greater constraints on 
the initial conditions to limit the model runs, or sacrifices some of the spatial resolution to reduce the grid size.

There are also some limitations in the topography dataset, with implications for the predicted impact on trans-
port. Although the GIS data is high-resolution, it does not capture small rivers or narrow passes in mountainous 
areas that might have a disproportionate impact on transport routes. Furthermore, whilst the coefficients for 
calculation of the least-cost paths across the landscape are externally derived from other studies, the values are 
only approximate for each period under study. There are also several coefficients that require refinement, but at 
the expense of generality. For example, inclusion of larger rivers in the Water Bodies scenario has the positive 
benefit of permitting river freight and preferential transport between linked river locations. However, as currently 
implemented, it also uniformly removes the river as a barrier to crossing along its length. In reality, fords and 
bridges are relatively sparse and have a strong impact on local centres of population, but their location cannot 
be predicted with the resolution currently available. In addition, the underlying landscapes are assumed to be 
unchanged in the model, whilst in practice the landscape has been altered by engineering of transport routes to 
explicitly circumvent barriers, using tunnels, bridges, or elevated roads. Thus, the situation assumed in the model 
would be more relevant to epochs before the introduction of highly structured and planned transport networks 
in the modern era, such as motorways, railways and air transport.

Another limitation arising from the assumptions in the simplified model, is that various resources needed 
to support populations are uniformly distributed. In reality, resources are spatially-varying, and the model 
can be partly reformatted to include a spatially-varying population capacity, Ci , in Eq. (2) (see Supplementary 
Information 3). Moreover, as resources are consumable, shortages may arise from large populations, curtailing 
local growth. The negative feedback by consumable resources will be important to consider for the sustainability 
of cities and the transport connections between them. In addition, the model is mathematically described as a 
dynamical system. It assumes deterministic and gradual changes of the system, while rare, but large, interurban 
migratory shocks might also have a significant effect on long-term growth of cities44.

Overall, we argue that the LTP model should probably be best considered as providing a sophisticated null 
model to facilitate thought experiments about the spatial patterns of cities and roads, and the factors that might 
influence them. In this framework, the LTP model provides a baseline reference tool to predict the expected 
population distribution when constrained solely by topography, in the absence of higher-level socio-economic or 
cultural factors. In this sense, the deviation of the real-world data from the model at each location is perhaps the 
most interesting feature, as it quantitatively indicates the influence of (untested) spatially-varying environmental 
factors, such as climate, water, soil, and crop productivity, on the one hand, or local economic, social, cultural, 
historical and political factors, on the other. For example, the predicted population of Rome is about a third 
(35.9%) of the actual number, suggesting that its status as both a capital city and a religious centre has stimulated 
three-fold more growth than expected. To test such factors empirically, the model can be reformatted to include 
a spatially-varying population capacity or other factors with relevant datasets for future works. This approach 
provides a systematic way to test the impact of various local or regional factors individually or in combination and 
how their impact might propagate across the network. We argue that such a bottom-up, building-block approach 
starting with known external factors drawn from physical geography offers a new direction to deconstruct the 
complex phenomena of human civilization involving many natural and social factors.

Methods
Calculation of transport distances across landscapes.  Topographic datasets.  We used the Shuttle 
Radar Topography Mission (SRTM) 1 Arc-Second Global elevation dataset for the digital elevation model, and 
the SRTM Water Body, and Global River Classification (GloRiC) datasets for ocean, lakes and rivers. These data-
sets are publicly available, distributed by the United States Geological Survey (USGS)61 and World Wildlife Fund 
(WWF)62,63. In this study, we used the region ranging from 5◦ to 18.55◦ longitude, to 36.5◦ to 47.5◦ latitude that 
contains Italy and the surrounding Mediterranean Sea. The SRTM datasets contain the information on the type 
of cell, such as land, ocean, lake, or river, and the elevation in meters for each cell type. The data were downsized 
to 3 arcsecond spacing by median resampling to reduce the effects of outliers and reduce the computational 
complexity. To supplement the river network, rivers in the GloRic dataset greater than hydrologic class 1 were 
included.

Least‑cost path analysis.  We used standard GIS least cost path analysis64 to calculate the route for any detour, 
taking into account the topography. Thus, for each cell in the topographic dataset, the transportation cost to 
move to its eight adjacent neighbours was evaluated. The cost depends on both the slope, and cell type of the 
origin and destination cells. The least cost path between any pair of cells was then calculated on the grid graph 
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to minimize the accumulated cost along the overall length of the route, r. See Supplementary Information 1 for 
full details of the calculation and parameters.

Datasets for comparison with simulation results.  Census in 2011.  The census in 2011 was taken 
from the GEOSTAT 2011 grid dataset, distributed from Eurostat, EFGS65. In Fig. 3, this census data was aggre-
gated by Italian administrative units (Regione and Provincia). The boundary information of these administrative 
units in 2011 was obtained from the Italian National Institute of Statistics66.

Census in 1911.  The Provincia population in 1911 (Fig. 6) was taken from a data repository67, originally from 
the Almanach de Gotha68. The boundary information of Provincia in 1911 was obtained from the Italian National 
Institute of Statistics66.

Estimated city population sizes in the ancient Roman period (164CE).  The population of the ancient Roman 
cities shown in Fig. 5a were obtained from the open-access database of the Oxford Roman Economy project45,69. 
The cities that existed at 164CE in the target region were selected from the database. The populations of the cities 
were estimated using a scaling law between city area and population, as proposed by Hanson and Ortman46. The 
sum of city populations over the cities shown in Fig. 5 was 2,800,832, which is less than the estimated popula-
tion in the entire area of about 12 million70. The urbanisation rate rarely exceeded 20% of total population at this 
time71, thus the difference between these numbers represents the rural population outside the cities in total. The 
spatial distribution of the rural population is less clear because of methodological difficulties, but it is probably 
higher close to urban sites in highly urbanized areas, whereas it may be distributed further away from urban sites 
in low-populated regions72. We therefore modelled the spatial distribution of the rural population by a biased 
distribution to the locations close to populated cities, which is proportional to a distance-discounted score s(i) 
at each location i:

where ju denotes the location of a city u and riju is the least-cost distance specified for walking with R = 8 km.

Estimated population distribution during 1300–1861.  During 1300–1861, the populations in Italian cities with 
greater than 5000 residents were taken from the Italian Urban Population database47,73. The locations of the cites 
were determined by matching their names with the records in the GEONAMES database74. The rural population 
in total outside the cities was calculated from the urbanisation ratio during the ages47,75, and its spatial distribu-
tion is determined in the same way to that in 164CE—a distribution proportional to the distance-discounted 
score to populated cities, given by the Eq. (4) with R = 8 km.

In Fig. 6, the population distributions during 1300–1861 were aggregated using the Provincia boundaries in 
1911 following re-unification. This is because (i) a common agglomeration is required to compare the value of 
KL distance across the middle ages. (ii) High-resolution shape files for Provincia in 1911 are available in digital 
format from the Italian National Institute of Statistics66. (iii) Provincia in 1911 covers the whole Italian Peninsula, 
including Roma, Verona, and Vicenza that were excluded from the Provincia dataset in 1861.

GPS‑tracked traffic.  We use the traffic data which is publicly available from OpenStreetMap76, as a proxy of 
transportation volume at each location. We used a set of GPS tracks in Italy, collected up to 2013. A track is an 
ordered list of GPS points describing a path. We excluded uncorrected data which only comprised a single point, 
and selected the tracks which had a minimum 1 km trip from a location in Italy. The resultant dataset has 63999 
tracks with 90600639 points. The number of these points were counted in cells 45 arcsecond × 30 arcsecond 
(about 1 km), to give the traffic data describing the number of people passing through each cell. It is noted that 
anonymous contributors who uploaded the GPS tracks may not necessarily be representative samples from Italy 
as a whole. Thus, to correct the sample, counts were weighted by the populations in provinces where the tracks 
originated.

Data availability
The topographic datasets and the census data that support the findings of this study are publicly available as 
noted in Methods.

Code availability
The simulation code of the model is available in a GitHub repository at https://​github.​com/​Takaa​kiAok​iWork/​
geody​namics/.
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