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Uplink OFDM detection 
with random multiple access
Amir J. Salomon1*, Benjamin G. Salomon2 & Ofer Amrani1

Orthogonal Frequency-Division Multiplexing with Random multiple access (OFDRMA) is discussed for 
uplink communications, whereby several active users send information towards a single base-station 
(BS), while all other users are dormant. Originally, uplink communication methods included sharing 
the frequency resources among the active users in an orthogonal fashion, i.e., a central unit is required 
to dynamically allocate the resources. More recently, non-orthogonal methods have arisen, meaning 
that several active users share the same frequency bins, but they still do require a central unit to 
dynamically allocate the resources in a uniform (as possible) manner over the available bandwidth. 
The task and overhead required for managing the frequency allocations among the users can be quite 
cumbersome. In OFDRMA, the frequency allocations for any user are independent of the frequency 
allocations for the other users, and independent of which of the other users are currently active. 
Rather, OFDRMA relies on random, yet predetermined, allocation of frequency bins for each user, 
known only to that user and the BS. A multi-user detection approach is presented based on a graphical 
representation of the system. It is shown to provide robustness against the forced randomness of the 
scheme. Capacity of OFDRMA and its optimization are analyzed and provided in detail. Simulation 
results are provided for demonstrating the performance attainable with OFDRMA and the proposed 
detection scheme. Both the capacity and the simulations are compared with modern multi-user 
multiple-input multiple-output (MU-MIMO) schemes.

Orthogonal frequency-division multiplexing (OFDM) is nowadays a common practice for data transmission, 
where the binary information is first modulated into a larger symbol constellation, and the modulated sequences 
are transmitted over multiple carrier frequencies. The total available bandwidth is divided into units called fre-
quency subcarriers (a.k.a. bins). Each bin is used to transmit a separate narrow-band signal. A major advantage 
of OFDM compared to single-carrier schemes is that it dose not requite complex equalization in order to provide 
reliable communications.

In a typical multiuser environment incorporating OFDM, a number of users employ the same transmission 
medium over the same frequency band to transmit simultaneously towards a single BS. In order to minimize 
interference among the active users, the BS dynamically allocates to each active user a set of bins, over which 
the user and the BS convey information between each other. Ideally, this set of bins is disjoint from the bins 
employed by all other transmitting users, but it is not always possible to achieve that.

The process of orchestrating the frequency allocations among the users can be quite cumbersome in certain 
scenarios, and even impossible in others. For example, consider a network cell in which the user equipment must 
be simple, where no channel state information (CSI) is assumed at the users’ side and the channel is frequency 
selective. This may very well be the case for certain IoT (Internet of Things)1, smart grid applications, and certain 
power-line communication (PLC) systems.

Another relevant scenario can be encountered when an OFDMA (OFDM with multiple access) network 
controller ceases to operate. The network controller is typically a part of the BS; it periodically sends short mes-
sages to all the active users using the downlink channel, and receives short messages from all the active users 
on the uplink channel. These type of control messages on the uplink channel originate from the users, and they 
inform the network controller that a user becomes active or becomes inactive accordingly. The network con-
troller analyzes these messages and takes note of the total number of active users. Then, the network controller 
informs each of these users, by sending control downlink messages, which subcarriers it should use in the near 
future for transmitting data towards the BS. The network controller tries to allocate the users over the frequency 
bins as uniformly as possible, i.e., that each bin will contain data from the the same number of active users, or at 
least as close as possible. When the network controller cease to operate, some other mechanism for dynamically 
allocating the frequency resources between the users should be activated.
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To handle the scenarios above, among others, we will develop a new approach, which incorporates (pseudo) 
randomness into the OFDMA-based scheme. In the absence of uplink channel-knowledge at the users’ side, 
and lack of specific resource allocation guidance from the BS, each user shall occupy a unique (pseudo) random 
set of bins known (only) to that user and the BS. The set of bins employed by each user is fixed (much like an 
identifying medium access control (MAC) address). A table (code-book) holding the complete bin-usage for all 
the users in the network will be stored at the BS. We refer to the obtained scheme as OFDRMA (Orthogonal Fre-
quency Division with Random Multiple Access). OFDRMA may be considered as an instance of non-orthogonal 
multiple access (NOMA). NOMA has been discussed for downlink channel2,3 with random access, to which 
one can refer as NORMA. NOMA for wireless networks uplink channel has been discussed4 with deterministic 
(”non-random”) resource allocation; the interference among active users is controlled and restrained by a central 
controller, hence retaining the overhead and complexity associated with orchestrating the frequency resource 
allocation. Uplink NOMA for 5G systems using uplink power control has been discussed5,6, aiming at optimiz-
ing the outage performance and the achievable sum data rate. User pairing and power allocation in NOMA has 
been discussed for both the uplink channel7,8 and the downlink channel6,8. Power domain NOMA has been 
discussed for both the uplink and the downlink channels9, where the BS controls the power and rate of all the 
users according to the channel state information.

Random usage of frequency resources was considered in the late 90’s by Nogueroles et. al.10, where a few 
basic aspects of the scheme were briefly studied theoretically. Employing OFDRMA for the, so-called, ”disaster 
recovery” scenario has been described in detail11. The concept of OFDRMA in the downlink transmission chan-
nel has been studied recently by the authors of this paper12. The concept of OFDRMA in the uplink transmission 
channel alongside an effective multi-user detection algorithm has not been studied or evaluated in the past.

In OFDRMA collisions may occur when two users, or more, simultaneously occupy the same bin. Clearly, 
the number and pattern of collisions depend on the number of active users, message length, modulation order, 
number of available bins, and the required bit rate. In this paper, to effectively mitigate the influence of collisions 
and recover the information reliably, error-control coding is introduced at the transmitter side, and a specific 
multi-user detection (MUD) algorithm is proposed to be carried out at the BS side. The combined MUD and 
error correction decoding algorithms proposed herein are shown to provide robustness against the collisions 
even under severe collision scenarios. The rest of the paper is organized as follows. Background and general 
system description are given in Sec. 2. Basic properties of collisions’ behavior are briefly discussed in the Sec. 3. 
A graphical representation of the detection scheme is discussed briefly in Sec. 4. A first detection algorithm is 
presented in Sec. 5; this algorithm employs maximum a posteriori (MAP) estimation method. In Sec. 6 a second 
detection algorithm is presented, which employs a reduced complexity suboptimal linear estimation method. 
Sec. 7 provides detailed analysis of the OFDRMA capacity and how to maximize the capacity of any given 
OFDRMA layout. OFDRMA capacity is thoroughly compared with the capacity of corresponding MU-MIMO 
schemes. Sec. 8 provides simulation results for some scenarios. The simulation results are thoroughly compared 
with simulation results of corresponding MU-MIMO schemes. Finally, conclusions are drawn in Sec. 9.

Preliminaries
Herein, we consider a ”single-cell” environment, i.e., a single access-point (base station), serving u active users. 
u is effectively a random variable (RV), as will be discussed later, assumed to be known to the BS (The algorithm 
by which u becomes known to the BS is outside the scope of this work). Each user is assumed to have a single 
transmit antenna, but this can be easily generalized. The number of receive antennas at the BS is denoted by ϑ.

A transmission by any (active) user is divided into units called packets. The total number of frequency sub-
carriers, available for information transmission in each packet, is denoted by m. m is termed the packet length; 
typical values for m range between 100–10, 000. The frequency-domain intercepted signals on the BS side are 
denoted by Fal  , with l being the subcarrier index number, 1 ≤ l ≤ m , and a being the index number of the receive 
antenna, 1 ≤ a ≤ ϑ.

Let X̄i denote a length-n coded and modulated sequence that user i transmits toward the BS. Correspondingly, 
n is the number of frequency bins user i employs in a single packet (we assume that n is the same for all users, 
but this can be easily generalized), where n ≤ m.

The coded and modulated sequence X̄i is given by:

Each of the elements of X̄i is chosen from a pre-defined finite constellation. Binary error-correcting codewords are 
generated by each user and mapped onto constellation points. For example, a user shall employ a single codeword 
per packet when using BPSK modulation, and two codewords per packet when QPSK modulation is employed.

In the following we assume that each user employs QPSK for the sake of notational brevity; transmission using 
BPSK constellation is straightforwardly derived by simplifying the following expressions, and the development 
for higher order constellations is quite similar.

When using QPSK, 2 bits select a constellation point. Therefore, in each transmission, each active user gener-
ates two binary codewords:

belonging to the binary, length-n, codes C1 , C2 , x̄1i ⊂ C1 , x̄2i ⊂ C2 . Typically, C1 and C2 are permutated versions 
of each other13. Each bit-pair is then mapped to a constellation point:

(1)X̄i = [Xi1,Xi2, . . . ,Xin].

(2)x̄1i =[x1i1, x
1
i2, . . . , x

1
in],

(3)x̄2i =[x2i1, x
2
i2, . . . , x

2
in],
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A QPSK point in the complex signal space is given by:

where ω is the mean signal energy:

and ι is the imaginary unit ι2 = −1.
The BS holds the following information concerning all the users operating within its cell:

Definition 1  The allocation vector of user i, 1 ≤ i ≤ u , denoted by:

is a size n (pseudo) random subset of {1, 2, . . . m} ; each tij denotes the frequency bin on which the ith user sends 
its jth symbol. Each user i knows only its own t̄i , but the BS knows all t̄i , 1 ≤ i ≤ u.

The signals received at the BS receiver on frequency subcarrier l are affected by all the users transmitting on 
this subcarrier. Using OFDM frequency-domain equivalent channel, we get:

where I(·) is the indicator function and hail is the path gain on subcarrier l between user i and receive antenna a. 
The path gains are mutually independent and identically distributed (i.i.d) circularly-symmetric complex normal 
RVs with variance of 1 per sample. The values of hail are assumed to be known only to the BS (the algorithms by 
which the path gains become known to the BS are outside the scope of this work14). The noise samples nal  are 
i.i.d circularly-symmetric complex normal RVs with variance σ 2 per sample.

Collision events
Collisions occur when at least two users transmit simultaneously on the same subcarrier.

Definition 2  Let cl be the number of (non-zero) terms included in the double sum (7) of Fl for a specific bin 
l (i.e., the number of users contributing to the value of Fl ). If cl > 1 , we say that collision occurred on the lth 
subcarrier, with cl being the order of the collision.

Collision events may degrade system performance in terms of increased error rate, but no less important is the 
increased decoding complexity at the BS. First, we briefly derive a simple mathematical model for collision events.

The first user distributes n symbols in m distinct bins selected randomly. The event that a specific bin was 
chosen has a Bernoulli distribution with probability:

The parameter p, which may be either fixed or viewed as an utilization factor, is of particular importance later 
in the paper, where we analyze the OFDRMA scheme capacity and its optimization.

The second user repeats the same process independently from the first user. For u active users, the number 
of users transmitting (colliding) on a specific bin has a Binomial distribution, the probability for collision of 
order c on any bin is:

The average number of collisions on a single bin is:

and we can also state that:

as both sides of the equation are equal to the total number of interceptions at the BS, for all the users transmit-
ting within the same packet.

(4)Xij = Sx1ijx
2
ij
.

(5)Sx1ijx
2
ij
=

√

ω

2
·
[

(−1)
x1ij + ι · (−1)

x2ij
]

,

(6)ω = E
(

�Sx1ijx
2
ij
�2
)

.

t̄i = [ti1, ti2, . . . , tin],

(7)Fal =

u
∑

i=1

n
∑

j=1

I(l = tij) · Xij · h
a
il + nal

(8)p =
n

m

(9)p(cl = c) =

(

u
c

)

·
( n

m

)c
·
(

1−
n

m

)u−c
.

(10)E(cl) =
u · n

m
,

(11)
m
∑

l=1

cl = u · n,
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It should be noted that in practice, the users have fixed allocation vectors; however, since these vectors are 
generated randomly, and the u active users are taken (at random) from a much larger number of possible users, 
the above discussion is statistically correct.

It is evident from the above discussions that in order to minimize the occurrence of collisions, a small number 
of users, u, is desired (practically not controllable), and a large number of available frequency bins, m, is desired 
- which in turn reduces the transmission rate and increases latency. Shorter code length, n, also reduces the 
occurrence of collisions, but using shorter error correcting codes typically implies higher decoding error rate.

Graphical representation of the detection scheme
A unified graphical representation for the complete frequency allocation and coding scheme that captures all the 
active users is natural for OFDRMA. The graph can be divided into two interconnected bi-partite subgraphs as 
depicted in Fig. 1. The coded bits (denoted by circles), placed in the middle, connect the two sides of the graph.

The left-hand-side (LHS) subgraph represents the bits (circles) and their allocation (LHS edges) among all 
the available frequency bins (denoted by the LHS squares). In other words, the modulated symbol that carries a 
certain bit is transmitted on a certain bin if an edge connects the corresponding circle and square. If more than 
one edge is connected to a (LHS) square, it means that multiple users share the same frequency bin, leading to 
a collision on that bin. The number of edges coming out of this square is the collision order.

The right-hand-side (RHS) subgraph represents the error-correcting mechanism of this scheme. It is com-
posed of a multiplicity of disjoint (bi-partite) graphs associated with the error-correcting parity check matrices 
of the active users. Each parity-check equation (RHS squares) connects (via RHS edges) to an appropriate set of 
bits (circles). Typically, this would imply that u copies of the same diagram are placed vertically, assuming each 
user employs the same error correcting code. This situation is demonstrated in Fig. 1. However, in general, this 
is not necessarily the case as each user can use a different code, if required.

The decoding process amounts to messages passing along the graph edges from left to right and vice versa. 
Initial bit reliability messages are extracted from the frequency bins and passed to the bits over the LHS edges. 
Then, messages iterate back and forth on the RHS edges for a desired number of iterations. Then, messages pass 
left and right (once) along the LHS edges, in order to update the initial bit reliability messages according to the 
other bits it shares on the same frequency bin. This whole process is repeated for a few cycles, as required. This 
iterative detection process is detailed in the following sections.

Figure 1.   OFDRMA unified graphical representation.
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Multi‑user detection using maximum a posteriori approach
Assume that each user transmits two LDPC codewords in a single packet using QPSK modulation (5). For the 
ith user, we need to calculate the probability (12) of the jth bit of the first code x1ij (the calculation for the cor-
responding second codeword bit x2ij is similar). First, the receiver (BS) uses the vector t̄i to find the frequency 
bin, denoted by α , over which this bit was transmitted, i.e. α = tij . We list all the other users that transmit on the 
same bin and their corresponding bit indexes by the following set:

D
α
i  is a (vector) set consisting of pairs of integer numbers; each pair indicates a user number and its correspond-

ing bit index transmitted over frequency bin α.
The order of the collision occurring in bin α is denoted by cα , as discussed in Sec. 3. The number of elements 

(pairs) in each set Dα
i  is evidently cα − 1 . For simplicity of notation and without loss of generality, we replace cα 

with c, we assume that i = 1 , and assume that users numbered 2, 3, . . . , c have collided with user 1 in bin α . The 
bit indexes of the corresponding codewords are marked by ξe , 1 ≤ e ≤ c (for instance, ξ1 = j , as implied by the 
description above).

During the decoding process, the BS stores and periodically updates 2 tables; one table for each of the 2 error-
correcting codewords (as we assume QPSK modulation). The size of each table is u× n , as it stores the current 
probabilities for all the bits associated with all the users:

where i is the user number indicator, 1 ≤ i ≤ u , and j is the bit index indicator, 1 ≤ j ≤ n.
For brevity of notation in the expressions that follow, we replace the sum notation

simply by 
∑

x
 for the discussion that follows.

We need to calculate the probability for x11j = β , β ∈ {0, 1} ; this probability is affected directly by all the signal 
values intercepted on the ϑ BS receive antennas on bin α , which are F1α , F2α , . . . , Fϑα  :

 where f (F1α , . . . , Fcα) is the joint probability density function of the values intercepted on all the receive antennas 
on bin α ; we do not need to explicitly calculate this probability, as the decoding process requires only the ratio

hence the term f (F1α , . . . , Fcα) is cancelled out in both the numerator and the denominator.
Remarks to (13): 

D
α
i =

⋃

tĩ,j̃=α

{ĩ, j̃}, 1 ≤ ĩ �= i ≤ u, 1 ≤ j̃ ≤ n

(12)p1ij = prob(x1ij = 1) , p2ij = prob(x2ij = 1),

∑

x21ξ1
,x12ξ2

,x22ξ2
,···,x1eξe ,x

2
eξe

,···,x1cξc ,x
2
cξc

(13)

p(x11j = β|F1α , F
2
α , . . . , F

ϑ
α ) =

f (F1α , . . . , F
ϑ
α |x

1
1j = β) · p(x11j = β)

f (F1α , . . . , F
ϑ
α )

=
(a)

�

x

f
�

F1α , . . . , F
ϑ
α |x

1
1j = β , x21ξ1 , x

1
2ξ2

, x22ξ2 , · · ·, x
1
eξe

, x2eξe , · · ·, x
1
cξc
, x2cξc

�

· p(x21ξ1 , x
1
2ξ2

, x22ξ2 , · · ·, x
1
eξe

, x2eξe , · · ·, x
1
cξc
, x2cξc ) ·

0.5

f (F1α , . . . , F
ϑ
α )

=

�

x

ϑ
�

d=1

f
�

Fdα |x
1
1j = β , x21ξ1 , x

1
2ξ2

, x22ξ2 , · · ·, x
1
eξe

, x2eξe , · · ·, x
1
cξc
, x2cξc

�

· p(x21ξ1 , x
1
2ξ2

, x22ξ2 , · · ·, x
1
eξe

, x2eξe , · · ·, x
1
cξc
, x2cξc ) ·

0.5

f (F1α , . . . , F
ϑ
α )

=
(b)

�

x

ϑ
�

d=1

exp







−
1

σ 2
·

�

�

�

�

�
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c
�

e=2
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2
eξe

· hdeα

�

�

�

�

�

2






· p(x21ξ1)p(x
1
2ξ2

)p(x22ξ2)· · ·p(x
1
eξe

)p(x2eξe )· · ·p(x
1
cξc
)p(x2cξc ) ·

0.5

(πσ 2)ϑ · f (F1α , . . . , F
ϑ
α )

=

�

x

exp




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−
1

σ 2
·

ϑ
�
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�
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·

c
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c
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(p2eξe )
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(a)	 We take a-priori value p(x11j = 1) = 0.5 always instead of the current p11j value in order to minimize circu-
lation of the same information on the code graphs (similar to the concept of minimizing cycles in LDPC 
codes15); all the other probability values are taken from the probability tables (12) that are updated periodi-
cally.

(b)	 The bit values are initially i.i.d., however as the algorithm progresses, some dependency is introduced due to 
the passing of information between frequency bins, receive antennas and distinct codeword bits; however, 
the i.i.d. assumption proves to be sufficiently accurate.

In view of the above derivation, a multi-user detection (MUD) algorithm can be stated as follows:

Algorithm 1 

1.	 Initialize the probability matrices p1ij = p2ij = 0.5 , 1 ≤ i ≤ u , 1 ≤ j ≤ n.
2.	 Update the probability matrices according to (13).
3.	 Compute the log-likelihood ratio (LLR) metrics for each bit of each user: 

4.	 Perform iterative Belief-Propagation decoding15 for each of the 2u LDPC codewords of length-n, namely x̄1i  
and x̄2i  , for 1 ≤ i ≤ u . The number of decoding iterations depends on a few parameters, e.g. the type of code 
used, the available decoding complexity and the desired decoding latency.

5.	 Using the LLR values obtained from the LDPC decoding, calculate the bit probability matrices values: 

6.	 Return to Step (2).

To summarize, the presented multi-user detection algorithm is executed at the BS side based on MAP esti-
mation principles. This detector is not MAP estimation per definition, but an approximated MAP (due to the 
separate metrics computations for every user and each bit, the separate decoding of each user and the use of 
suboptimal LDPC decoding methods). Nevertheless, the periodic probability calculation for every bit (13) is 
MAP-oriented in the sense that all the collision combinations are considered according to their respective a-priori 
probabilities. Indeed, the simulations presented in Sec. 8 provide good results. However, the complexity associ-
ated with this type of detection is high when the rate of collisions increases. This may occur due to larger number 
of active users, longer error correcting codes or shorter available packet length. An efficient reduced-complexity 
decoding algorithm is the subject of the next section.

Linear estimation approach
The proposed method in this section is based on finding estimates for the following modulated symbols:

The estimates are based on ϑ signal values for each symbol; these values are the intercepted signals on all the 
receive antennas on the relevant allocated frequency bin tij , i.e. F1tij , F

2
tij
, . . . , Fϑtij.

The intercepted signal values are complex numbers, hence the problem can be formulated as an estimation 
of a (real) RV from a given (real) random vector of length 2ϑ . Our estimator will be linear for computational 
feasibility (of particular significance when large antenna arrays are employed), hence statistics up to second 
order are required. Similar to the discussion in Sec. 5, for simplicity of notation and without loss of generality, 
we use the notation α = tij , and the order of the collision occurring in bin α is denoted by c. We assume that 
i = 1 , and we assume that users 2, 3, . . . , c have collided with user 1 on bin α . We consider each estimator for x̃1ij 
and x̃2ij separately.

Estimator for x̃1
1j

.  The QPSK symbol transmitted by user i = 1 on bin α is equal to Sx11jx21j , given by (5). The 
probabilities required for the estimation are of the same form as (12). From (7) we get:

We shall develop an estimator for x̃11j given the length-2ϑ column vector

(14)llr1ij = ln
1− p1ij

p1ij
, llr2ij = ln

1− p2ij

p2ij
.

(15)p1ij =
1

exp(llr1ij)+ 1
, p2ij =

1

exp(llr2ij)+ 1
.

(16)x̃1ij = (−1)
x1ij , x̃2ij = (−1)

x2ij

(17)R(Faα) =

√

ω

2
·

c
∑

k=1

{

x̃1kj ·R(hakα)− x̃2kj · I(h
a
kα)

}

+R(nα),

(18)I(Faα) =

√

ω

2
·

c
∑

k=1

{

x̃1kj · I(h
a
kα)+ x̃2kj ·R(hakα)

}

+ I(nα).
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For the estimation we shall need the covariance matrix CF̄ , of F̄ ; it is easy to realize that CF̄ consists of the fol-
lowing values:

where δ[•] is the Kronecker delta, and the variances of x̃1kj , x̃
2
kj are given by:

where in (24) we take p11j = 0.5 , rather than employing the current iteration probability value (see remark (a) on 
Eqn. (13)). All the other probability values are taken from the probability tables (12) that are updated periodically.

Define the following matrix ψα of size 2ϑ × 2c as follows:

and the following diagonal matrix Λα of size 2c × 2c as follows:

Combining (20–27), we express the covariance matrix of F̄ in the following form:

where I2ϑ is the identity matrix of size 2ϑ . It is easily shown that the cross-covariance vector, between x̃11j and 
F̄ , is equal to:

where again p11j = 0.5 , hence Cx̃11j
= 1 . For numerical calculation reasons, to be clarified later (see Obs. 1), we 

will express Cx̃11j F̄
 in the form:

where ρ1 is a length-2c row vector, consisting of a single 1 and 0 elsewhere:

The mean of F̄ is denoted by ηF̄ ; ηF̄ consists of the following values:

(19)F̄ =
[

R(F1α) I(F1α) R(F2α) I(F2α) . . . R(Fϑα ) I(Fϑα )
]T
.

(20)CF̄(2a− 1, 2z − 1) =
ω

2
·

[

c
∑

k=1

R(hakα) ·R(hzkα) · Cx̃1kj
+ I(hakα) · I(h

z
kα) · Cx̃2kj

]

+
σ 2

2
· δ(a− z),

(21)CF̄(2a, 2z) =
ω

2
·

[

c
∑

k=1

I(hakα) · I(h
z
kα) · Cx̃1kj

+R(hakα) ·R(hzkα) · Cx̃2kj

]

+
σ 2

2
· δ(a− z),

(22)CF̄(2a, 2z − 1) =
ω

2
·

[

c
∑

k=1

I(hakα) ·R(hzkα) · Cx̃1kj
−R(hakα) · I(h

z
kα) · Cx̃2kj

]

,

(23)CF̄(2a− 1, 2z) =
ω

2
·

[

c
∑

k=1

R(hakα) · I(h
z
kα) · Cx̃1kj

− I(hakα) ·R(hzkα) · Cx̃2kj

]

,

(24)Cx̃1kj
=4p1kj · (1− p1kj),

(25)Cx̃2kj
=4p2kj · (1− p2kj).

(26)Ψα =



















R(h11α) I(h11α) R(h12α) I(h12α) . . . R(h1cα) I(h1cα)
I(h11α) −R(h11α) I(h12α) −R(h12α) . . . I(h1cα) −R(h1cα)
R(h21α) I(h21α) R(h22α) I(h22α) . . . R(h2cα) I(h2cα)
I(h21α) −R(h21α) I(h22α) −R(h22α) . . . I(h2cα) −R(h2cα)
. . . . . . . . . . . . . . . . . . . . .

R(hϑ1α) I(hϑ1α) −R(hϑ2α) I(hϑ2α) . . . R(hϑcα) I(hϑcα)
I(hϑ1α) −R(hϑ1α) I(hϑ2α) −R(hϑ2α) . . . I(hϑcα) −R(hϑcα)



















,

(27)Λα = diag

([

C
1
2

x̃11j
,C

1
2

x̃21j
,C

1
2

x̃12j
,C

1
2

x̃22j
, . . . ,C

1
2

x̃1cj
,C

1
2

x̃2cj

])

.

(28)CF̄ =
ω

2
· (Ψα ·Λα) · (Ψα ·Λα)

T +
σ 2

2
· I2ϑ ,

(29)Cx̃11j F̄
=

√

ω

2
· [R(h11α),I(h

1
1α),R(h21α),I(h

2
1α), . . . ,R(hϑ1α),I(h

ϑ
1α)].

(30)Cx̃11j F̄
=

√

ω

2
· ρ1 · (Ψα ·Λα)

T ,

(31)ρ1 = [1, 0, 0, . . . , 0].
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where

and again p11j = 0.5 , hence ηx̃11j = 0.
The minimum mean-square (MMSE) linear estimator for x̃11j given F̄ is equal to:

and the mean-square error of the estimator is given by

The following observation has significant implications for reducing the computational complexity of the linear 
estimator:

Observation 1 

Using Obs. 1, the MMSE linear estimator can be re-written in the form:

While the estimator in (34) requires a sized 2ϑ matrix inversion, the estimator in (36) requires a sized 2c matrix 
inversion. The number of receive antennas, ϑ , is typically significantly higher than the number of users transmit-
ting on a single bin, which is c. This implies that the estimator in (36) requires a significantly reduced computa-
tional complexity; more specifically, it requires an order O(c3) numerical operations, compared to an order O(ϑ3) 
numerical operations with the estimator in (34). In addition, it is more robust against accumulated calculation 
precision errors when using Gaussian elimination method or one of its variations for the matrix inversion.

Estimator for x̃2
1j

.  The derivation of an estimator for x̃21j is similar to the derivation for x̃11j , herein we detail 
only the differences. Similar to the previous derivations, we take p21j = 0.5 , rather than employing the current 
iteration probability value; all the other probability values are taken from the probability tables  (12) that are 
updated periodically. This difference should be taken into consideration when calculating the matrix Λα (27) 
and the vector ηF̄ (32–33).

The cross-covariance vector, between x̃21j and F̄ , is equal to:

Similar to (30), we express Cx̃21j F̄
 in the form:

where ρ is a length-2c row vector, consisting of a single -1 and 0 elsewhere:

(32)ηF̄(2a− 1) =

√

ω

2
·

c
∑

k=1

{

R(hakα) · ηx̃1kj
− I(hakα) · ηx̃2kj

}

,

(33)ηF̄(2a) =

√

ω

2
·

c
∑

k=1

{

I(hakα) · ηx̃1kj
+R(hakα) · ηx̃2kj

}

,

ηx̃1kj
=1− 2p1kj ,

ηx̃2kj
=1− 2p2kj ,

(34)

x̂11j = Cx̃11j F̄
· C−1

F̄
· (F̄ − ηF̄)

=

√

ω

2
· ρ1 · (Ψα ·Λα)

T ·

[

ω

2
· (Ψα ·Λα) · (Ψα ·Λα)

T +
σ 2

2
· I2ϑ

]−1

· (F̄ − ηF̄),

(35)ε11j = E[(x̃11j − x̂11j)
2] = 1− Cx̃11j F̄

· C−1
F̄

· CT
x̃11j F̄

.

(Ψα ·Λα)
T ·

[

ω

2
· (Ψα ·Λα) · (Ψα ·Λα)

T +
σ 2

2
· I2ϑ

]−1

=

[

ω

2
· (Ψα ·Λα)

T · (Ψα ·Λα)+
σ 2

2
· I2c

]−1

· (Ψα ·Λα)
T .

(36)x̂11j =

√

ω

2
· ρ1 ·

[

ω

2
· (Ψα ·Λα)

T · (Ψα ·Λα)+
σ 2

2
· I2c

]−1

· (Ψα ·Λα)
T · (F̄ − ηF̄).

(37)Cx̃21j F̄
=

√

ω

2
· [−I(h11α),R(h11α),−I(h21α),R(h21α), . . . ,−I(hϑ1α),R(hϑ1α)].

(38)Cx̃21j F̄
=

√

ω

2
· ρ2 · (Ψα ·Λα)

T ,

(39)ρ2 = [0,−1, 0, . . . , 0].
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Linear estimation: description of the detection algorithm.  Using the estimators for x̃11j and x̃21j 
above, the complete detection algorithm can be formulated as follows:

Algorithm 2 

1.	 Initialize the probability matrices p1ij = p2ij = 0.5 , 1 ≤ i ≤ u , 1 ≤ j ≤ n.
2.	 Calculate all the linear estimators x̂1ij , x̂

2
ij and their corresponding mean-square errors ε1ij , ε

2
ij using the results 

in subsec. 6.1 and 6.2.
3.	 Compute the log-likelihood ratio (Note that this algorithmic ratio calculation assumes that x̂1ij and x̂2ij have 

Gaussian distribution; an assumption which is not always accurate. However, it is shown, via simulation, to 
provide a very good approximation) for each bit of every user: 

4.	 Run iterative Belief-Propagation (BP) decoding15 for each of the 2u length-n LDPC codewords, namely x̄1i  
and x̄2i  , for 1 ≤ i ≤ u.

5.	 Using the LLR values obtained from the LDPC decoding, calculate the bit probability matrices values (see 
(15)).

6.	 Return to step (2).

To summarize, we presented a detection algorithm carried out at the BS, which is based on a linear estima-
tor, combined with an LDPC decoding method. This detection scheme has a low decoding complexity due to 
the simplified (linear) processing of collision events. The scheme is readily implementable for practical MU-
MIMO and OFDRMA schemes, at the price of somewhat degraded error rate performance. Simulation results 
are presented in Sec. 8.

Uplink OFDRMA capacity
Each user transmits towards the BS on any of the frequency bins included in its allocation vector (Def. 1). Let us 
focus on the ith user. From this user’s perspective, any transmission on any of its allocated bins tij , 1 ≤ j ≤ n , can 
be corrupted by an interference of between 0 (no-interference) to u− 1 (maximum-interference) other users. 
The received signals at the base station, on any allocated bin α = tij , can be re-written using (7) in the form:

where F̄α is a length-ϑ column vector containing all the received signals on all the BS receive antennas, i.e., Faα 
for 1 ≤ a ≤ ϑ . Similarly, n̄α is a length-ϑ column vector containing all the noise samples on all the BS receive 
antennas, i.e., naα for 1 ≤ a ≤ ϑ . Hiα is a length-ϑ column vector containing all the path gains between the ith user 
and all the receive antennas, i.e., haiα for 1 ≤ a ≤ ϑ . Each H̃ĩα is a length-ϑ column vector with a similar construct 
to Hiα , with the following unique statistical property:

where p is the single user Bernoulli distribution probability, as discussed in Sec. 3. The probability for H̃ĩα to have 
non all-zeroes value is equal to the probability to have a collision order of 1 on bin α , as detailed in Sec. 3. Note 
that the form in (41) is not mathematically identical to the form in (7), as (41) has independent randomness in 
each and every separate bin, while (7) has randomness in the allocation of frequency bins over the entire OFDM 
packet. The form (41–42) is however correct from the statistical point of view, hence relevant for the capacity 
analysis that follows. The entries in Hiα and H̃ĩα are independent, which comes from the independency of the 
path gains haiα and the independent nature of the allocations between any user to the others. We assume all users 
employ Gaussian code books, the usual form of optimum signal in MIMO problems17,18. Then, if we condition 
on H̃ĩα , ĩ = 1 . . . u , ĩ �= i , the interference-plus-noise from (41), 

∑u
ĩ=1,ĩ �=i

H̃ĩα · Xĩj̃ + n̄α , is Gaussian distributed 
with covariance matrix:

where ω is the mean signal energy, similar to (6). As the base station has knowledge of the channel path gains 
and the users allocations, the interference-plus-noise is whitened by multiplying F̄α by C

1
2
i  . Using similar results 

from previous work19, the mutual information between the ith user input and the BS output can be expressed 
in the form:

(40)llr1ij = −
1

2ε1ij
[(x̂1ij − 1)2 − (x̂1ij + 1)2] , llr2ij = −

1

2ε2ij
[(x̂2ij − 1)2 − (x̂2ij + 1)2].

(41)F̄α = Hiα · Xij +

u
∑

ĩ=1,ĩ �=i

H̃ĩα · Xĩj̃ + n̄α ,

(42)H̃ĩα =

{

[0 0 . . . 0]T w.p. 1− p ,
[

h1
ĩα
h2
ĩα

. . . hϑ
ĩα

]T
w.p. p ,

(43)Ci =

u
∑

ĩ=1,ĩ �=i

H̃ĩα · ω · H̃H
ĩα
+ σ 2 · Iϑ ,
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where H denotes the complete channel path gain information available to the BS, and the identity 
det(I + AB) = det(I + BA) was used.

It would be useful, in addition, to compute the mutual information strictly for a specific given collision order 
on bin α . We will denote this by Ic for shortage of notation:

Where I0 = 0 refers to an unused bin whose mutual information is null. Unfortunately, in general, there are no 
closed form expressions for each Ic , and they have to be calculated numerically by Monte Carlo simulations. It 
is easy to see that every Ic depends only on the number of receive antennas and the SNR ratio ω

σ 2.
Keeping in mind that the base station knows all users bin allocations and hence the collision order cα on 

each bin α , and that a bin with collision order cα = c serves c users on bin α simultaneously, the average mutual 
information per-bin per-user is calculated as follows:

where p(cα = c) is the binomial distribution taken from (9). p is the probability (8) for a single user to occupy 
bin α , equal to the ratio between the code length to the OFDM packet length, i.e., nm . Naturally, when discussing 
channel capacity, the code length n is very large, and therefore necessarily the packet length m is also very large, 
as m ≥ n . However, in terms of maximizing capacity, n should not necessarily take the maximum possible value, 
which is m. We would like to maximize (46) as a function of p. Differentiating (46) with respect to p, we get:

Ī is a polynomial in p with order u, therefore dĪdp is a polynomial with order u− 1 . Therefore, equating (47) to zero 
yields, in general, u− 1 solutions. As p takes values strictly in the range 0 < p ≤ 1 , only solutions in this range 
should be considered. In addition, p = 1 should be considered as a candidate for maximizing Ī if dĪdp (p = 1) > 0 . 
It is easy to see that:

meaning that if

p = 1 should also be considered.
The Abel-Ruffini theorem states that no closed-form solutions exist for polynomial equations of degree 5 or 

higher, therefore when the number of active users u is 6 or higher, no closed-form solution exists for dĪdp = 0 , and 
the optimal p values must be calculated numerically.

A more strict scenario than (49) can be useful as follows:

Observation 2  If

for every 2 ≤ i ≤ u , then Ī is maximized by setting p = 1.

Proof  Let pc , 0 ≤ pc ≤ 1 , be the probability for a collision of order c on bin α , i.e. p(cα = c) = pc . We would 
optimize the solution for the ’global’ problem, i.e. maximize Ī when pc are not limited to binomial distribution, 
as long as 

∑c=u
c=0 pc = 1 . Using the first equality in (46) and setting pu = 1−

∑c=u−1
c=0 pc , we differentiate Ī by 

each pc , 1 ≤ c ≤ u− 1:

Combining (51) with (50), we get that dĪdpc
< 0 for all 1 ≤ c ≤ u− 1 (where dĪdp0

< 0 always). This implies that in 
order to maximize Ī , the values of pc for 1 ≤ c ≤ u− 1 should take the lowest value possible, which is 0; therefore 
pu = 1 . Now, note that this ’global’ optimization solution coincides with the specific binomial distribution for 
p = 1 . Therefore p = 1 maximizes Ī for the binomial distribution. 	�  �

(44)

I(Xij; F̄α ,H) = E
{

log2

[

det
(

Iϑ + ω ·Hiα · HH
iα · C−1

i

)]}

= E
{

log2

[

1+ ω · HH
iα · C−1

i ·Hiα

]}

= E

{

log2

[

1+
ω

σ 2
·HH

iα ·

(

Ci

σ 2

)−1

· Hiα

]}

,

(45)Ic = I(Xij; F̄α ,H|cα = c).

(46)Ī =
1

u
·

c=u
∑

c=0

p(cα = c) · c · Ic =
1

u
·

c=u
∑

c=0

c ·

(

u
c

)

· pc · (1− p)u−c · Ic ,

(47)
dĪ

dp
=

1

u
·

c=u
∑

c=0

c ·

(

u
c

)

·
[

c · pc−1 · (1− p)u−c − (u− c) · pc · (1− p)u−c−1
]

· Ic .

(48)
dĪ

dp
(p = 1) = u · (Iu − Iu−1)+ Iu−1,

(49)u · Iu > (u− 1)Iu−1,

(50)u · Iu > (i − 1) · Ii−1

(51)
dĪ

dpc
=

c

u
· Ic − Iu.
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Example: u = 3.  We compute the explicit closed-form solutions for p when the number of active users is 
u = 3 . From (47) we get:

The first derivative is equal to:

and the second derivative is equal to:

Solving dĪdp = 0 , we get:

Keeping in mind that Ī(p = 0) = 0 and that Ī > 0 for 0 < p ≤ 1 , we implement the following optimization steps 
for the specific scenario of u = 3:

Algorithm 3 

1.	 If Obs. 2 holds, p = 1 is the optimum. If not, continue.
2.	 If 4 · (I1 − I2)

2 − 3 · (I1 − 2I2 + I3) · I1 < 0 , p = 1 is the optimum. If not, continue.
3.	 If p1 , p2 are both outside the range [0− 1] , p = 1 is the optimum. If not, continue.
4.	 For i = 1, 2 , if 0 < pi < 1 and d

2 Ī
dp2

(p = pi) < 0 , add p = pi as a candidate.
5.	 If 3I3 > 2I2 , add p = 1 as a candidate.
6.	 If there are 2 candidates, choose the one that gives the larger Ī.

Capacity of MU‑MIMO.  Finally, we would like to compare the capacity achieved in OFDRMA with the 
capacity achieved in the standard approach, namely the MU-MIMO scheme. In the context of this work, the 
common characteristic of both approaches is that both are non-orthogonal, in the sense that several users may 
occupy the same subcarrier simultaneously (OFDMA). The difference between the two is that in MU-MIMO a 
controller is needed to orchestrate and synchronize the active users, aiming at achieving (as close as possible) 
uniform distribution of subcarriers occupancy. We will derive the expression for the capacity in the case of MU-
MIMO, similar to our previous analysis in OFDRMA. In the context of the following analysis, we denote by p 
the ratio between the code length and the packet length, i.e., p = n

m again, but this time p does not have the same 
meaning as a parameter in the Bernoulli and Binomial distributions. The controller aims at creating a uniform 
distribution of subcarriers, meaning that each subcarrier has a collision order of either ⌊p · u⌋ or ⌊p · u⌋ + 1 . The 
probabilities for each collision order are p(cα = ⌊p · u⌋) and p(cα = ⌊p · u⌋ + 1) , respectively, where

The average collision order must be p · u , therefore:

From (56) and (57), we get:

The average mutual information per-bin per-user for all the users, denoted by ĪM for MU-MIMO, is calculated 
as follows:

Observation 3  In order to maximize ĪM , m should be a multiple of u, i.e. m = q · u , for an integer positive q 
(typically q ≫ 1 as we aim at achieving capacity). The maximum for ĪM will be achieved by choosing one of the 
following values for n: 

[

q, 2q, . . . , (u− 1) · q, u · q
]

 , s.t. p gets one of the following values: 1u ,
2
u , . . . ,

u−1
u , 1.

Proof  First, assume that p  = 1
u ,

2
u , . . . , 1 . Then, the value of ⌊p · u⌋ is fixed when differentiating ĪM by p:

(52)Ī = (I1 − 2I2 + I3) · p
3 + 2 · (−I1 + I2) · p

2 + I1 · p.

(53)
dĪ

dp
= 3 · (I1 − 2I2 + I3) · p

2 + 4 · (−I1 + I2) · p+ I1,

(54)
d2 Ī

dp2
= 6 · (I1 − 2I2 + I3) · p+ 4 · (−I1 + I2).

(55)p1,2 =
2 · (I1 − I2)±

√

4 · (I1 − I2)2 − 3 · (I1 − 2I2 + I3) · I1

3 · (I1 − 2I2 + I3)
.

(56)p(cα = ⌊p · u⌋)+ p(cα = ⌊p · u⌋ + 1) = 1.

(57)p(cα = ⌊p · u⌋) · ⌊p · u⌋ + p(cα = ⌊p · u⌋ + 1) · (⌊p · u⌋ + 1) = p · u.

(58)p(cα = ⌊p · u⌋) = ⌊p · u⌋ + 1− p · u , p(cα = ⌊p · u⌋ + 1) = p · u− ⌊p · u⌋.

(59)
ĪM =

1

u
·
{

p(cα = ⌊p · u⌋) · ⌊p · u⌋ · I⌊p·u⌋

+p(cα = ⌊p · u⌋ + 1) · (⌊p · u⌋ + 1) · I⌊p·u⌋+1

}

.

(60)
dĪM

dp
= −⌊p · u⌋ · I⌊p·u⌋ + (⌊p · u⌋ + 1) · I⌊p·u⌋+1.
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We can see from (60) that the sign (and value) of dĪMdp  remain fixed for p in the range su < p < s+1
u  for any integer 

s, 0 ≤ s ≤ u− 2 . Therefore, a local maximum for ĪM occurs if and only if p = s+1
u  , −s · Is + (s + 1) · Is+1 > 0 , 

and −(s + 1) · Is+1 + (s + 2) · Is+2 < 0 . The collection of the local maxima is the group of candidates, and the 
absolute maximum is chosen as the candidate that gives the largest ĪM . In addition, p = 1 is also a candidate if 
−(u− 1) · Iu−1 + u · Iu > 0 (note that this is the same condition for p = 1 as in the OFDRMA optimization). 
The maximum value of IM is therefore equal to:

	�  �

Capacity curves as a function of SNR for ϑ = 2 transmit antennas and u = 3 users are given in Fig. 2. The 
values of p that provide these maximum-entropy values are also displayed on the same graphs, denoted by 
pmax . Both OFDRMA and MU-MIMO results are given in each graph for comparison, using Alg. 3 and Obs. 3, 
respectively. Similarly, capacity curves for ϑ = 4 transmit antennas and u = 8 users are given in Fig. 3, with the 
exception that the larger number of users implies that numerical maximization of the entropy was required for 
OFDRMA, as explained after (49).

We can see that for low SNR values the optimal p values are equal to pmax = 1 . This is evident in Fig. 2 for 
SNR ≤ 5.14 dB and in Fig. 3 for SNR ≤ 0.1 dB . This is explained by that the additive Gaussian noise is more sig-
nificant compared to the multi-users interference, therefore it is beneficial to use all the available bandwidth for 

1

u
·max [I1, 2I2, . . . , (u− 1) · Iu−1, u · Iu].
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Figure 2.   OFDRMA & MU-MIMO comparison of capacity and corresponding p values vs SNR, ϑ = 2 , u = 3.
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Figure 3.   OFDRMA & MU-MIMO comparison of capacity and corresponding p values vs SNR, ϑ = 4 , u = 8.
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each user to combat the stronger additive noise. In this low-SNR region the capacity outputs of the OFDRMA 
and MU-MIMO coincide. Above a certain SNR ratio (depending on the values of ϑ and u), this scenario gradu-
ally changes, with pmax values decreasing, and an increasing gap in the capacity values is observed in favor of 
MU-MIMO over OFDRMA. However, as we shall see in the following simulation section, in the SNR region 
corresponding to practical bit error rates, this gap is not significant.

In addition, mutual information curves for a fixed p value are provided for u = 8 with ϑ = 4 , and u = 8 with 
ϑ = 2 . This type of analysis can be useful in practical systems where the code length n and the packet length m 
are strictly pre-defined, hence the ratio p = n

m is fixed. The results are given in Fig. 4 for p = 0.25 . Also displayed 
in the graphs are 4 vertical lines, which represent the SNR values required to achieve Ī = 7

30 and ĪM = 7
30 , for 

both ϑ = 4 and ϑ = 2 . The choices of the values p = 0.25 and mutual information of 730 will be clarified along 
with the simulation results in Sec. 8, where the simulations layout used the parameter p = 0.25 and the coding 
rate per-user per-bin is equal to 730 . The ’gap’ between the SNR required to achieve Ī = 7

30 and ĪM = 7
30 is equal 

to 0.45 dB for ϑ = 4 and 1.06 dB for ϑ = 2 . This gap is naturally in favor of the traditional MU-MIMO scheme 
over the novel OFDRMA scheme. Further comparisons of the results in Fig. 4 and the simulation results are 
included in Sec. 8.

Simulation results
Extensive simulations were carried out using LDPC code of length n = 120 and dimension k = 56 . This code 
has a sparse parity check matrix with constant column order of 3, and irregular row order of 5 or 6, and has no 
4-cycles in its graph. This code is labeled 120.64.3.109 in the Encyclopedia of Sparse Graph Codes16. The 
rest of the simulation parameters, i.e., the number of active users, number of receive antennas and packet length 
were chosen to represent a wide variety of scenarios for our proposed uplink scheme, and to demonstrate the 
robustness of OFDRMA against the forced randomness induced in the system.

OFDM packet length is equal to 4 times the code length, namely m = 480 , which implies that p = n
m = 0.25 . 

QPSK modulation was used in all simulations. The number of users ranges between u = 1 to u = 8 , where 8 
users implies that the number of users in each bin (10) is equal to u · p = 2 on the average for OFDRMA, and is 
exactly 2 in each bin for MU-MIMO. The coding rate per-user per-bin is equal to 2·km = 7

30 , which explains the 
SNR comparisons for this specific mutual information on Fig. 4.

Fig. 5 presents the bit error rate (BER) for ϑ = 4 receive antennas, for both the OFDRMA and MU-MIMO 
methods. For each method, both the MAP approach, detailed in Sec. 5, and the linear estimation approach, 
detailed in Sec. 6, are displayed. Note that with MU-MIMO, the performance for users number of between u = 1 
to u = 4 remains the same; this comes as a result of the choice m = 4 · n , therefore there are no collisions in the 
range 1 ≤ u ≤ 4 for MU-MIMO.

Figure 4.   OFDRMA & MU-MIMO comparison of Mutual Information vs SNR, p = 0.25 , ϑ = 2÷ 4 , u = 8.
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The degradation of the OFDRMA scheme compared to the state of the art MU-MIMO is between 0.25dB (for 
higher BER) to 0dB (for smaller BER) for u = 8 users. This is smaller than the theoretical mutual information 
gap shown in Fig. 4 (to our satisfaction). Few factors affect the difference between the theoretical and practical 
results, in particular the relatively short code length n and the sub-optimality of the decoding scheme.

The difference in the simulation results between the MAP and linear estimation approaches is found to be 
negligible for both OFDRMA and MU-MIMO.

In terms of the effect of number of users on performance, when u is increased from u = 1 to u = 8 , the deg-
radation is between 0.5dB to 0dB for MU-MIMO, and between 0.75dB to 0dB for OFDRMA; this gap in SNR 
becomes smaller for decreasing BER values.

Similarly, Fig. 6 presents the BER for ϑ = 2 receive antennas. The degradation of the OFDRMA scheme com-
pared to the state of the art MU-MIMO is between 0.8dB (for higher BER) to 0dB (for smaller BER) for u = 8 
users. Again, this is smaller than the theoretical mutual information gap shown in Fig. 4, in correspondence with 
the explanation above. Evidently, the degradation of the OFDRMA scheme compared to the state of the art MU-
MIMO is more significant with ϑ = 2 compared to ϑ = 4 . This is explained by that for OFDRMA, some bins can 
have high collision order (compared to the uniform distribution of MU-MIMO) due to the random allocation 
of users to bins. These bins transfer information poorly when the number of receive antennae is smaller, as the 
received diversity may be insufficient to cope with the higher collision orders on these bins.

The difference in the simulation results between the MAP and linear estimation approaches is negligible for 
MU-MIMO; for OFDRMA, the gap is found to be between 0dB to 0.1dB.

With respect to the effect of the number of users on performance, when u is increased from u = 1 to u = 8 , 
the degradation is between 0.7dB to 0dB for MU-MIMO, and between 1.5dB to 0.05dB for OFDRMA. The 
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Figure 5.   BER vs SNR, OFDRMA & MU-MIMO, QPSK, ϑ = 4 , u = 1÷ 8 , p = 0.25.
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detrimental effect of the increased number of users on performance is greater with ϑ = 2 compared to ϑ = 4 . 
This is explained by the fact that as the number of users increases, so does the collisions order. This is more dif-
ficult to handle at the BS side when the number of receive antennas, hence the received diversity order, is smaller.

Conclusions
OFDM with random multiple access (OFDRMA) was presented for uplink transmission. The capacity of the 
scheme was analyzed comprehensively and compared with the capacity of a comparable state of the art scheme, 
namely MU-MIMO. Two detection schemes, which vary in complexity, were described. These schemes were 
shown via simulation to provide good performance and robustness against the forced randomness of the system. 
The practical degradation in the performance of OFDRMA with respect to MU-MIMO was found to be actu-
ally less than that predicted by the theoretical capacity analysis. Nowadays, with the emergence of MU-MIMO 
and IoT related standards, relaying on NOMA in OFDMA is called for. The OFDRMA approach may prove as a 
viable alternative to MU-MIMO in scenarios where uplink communications cannot rely on BS oriented downlink 
messages that orchestrate the frequency resources allocations.
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