Table 2 The top 20 weighted genes selected from different machine-learnings.

From: Identification of useful genes from multiple microarrays for ulcerative colitis diagnosis based on machine learning methods

LASSO

PCA

GBM

RF

NN

SVM

Genes

Weight

Genes

Weight

Genes

Weight

Genes

Weight

Genes

Weight

Genes

Weight

S100P

0.52

C4BPA

1.85

OLFM4

1

OLFM4

3.89

TUBB2A

− 2.39

OLFM4

8.87

RARRES3

0.42

RIPK2

1.85

HLA-DMA

0.23

C4BPB

3.7

TIMP1

2.25

C4BPB

3.37

IFITM3

− 0.31

PYY

1.85

C4BPB

0.2

ISG20

1.63

CCL19

− 2.25

NMI

2.13

CD19

0.29

REG3A

1.85

NMI

0.18

DMBT1

2.43

DEFA6

− 2.01

HLA-DMA

1.96

CHAD

− 0.28

DUSP10

1.85

CLDN8

0.13

CXCL1

1.08

CD55

1.87

VNN1

1.78

NMI

0.24

CNTNAP2

1.84

VNN1

0.12

CLDN8

2.46

CXCL9

1.77

DEFA5

1.78

PLA2G2A

− 0.24

ATP2C2

1.84

HYOU1

0.11

LCN2

0.69

IFITM1

1.7

S100P

1.77

C4BPB

0.19

LRRN2

1.84

DEFA5

0.1

PRDX1

2.67

PCBP1

1.65

PRDX1

1.65

HYOU1

0.19

CHI3L2

1.83

PRDX1

0.1

GNA15

1.01

AQP8

1.64

CLDN8

1.55

VNN1

0.18

TRIM22

1.83

NPTX2

0.08

S100P

2.44

FTL

1.48

REG3A

1.38

NPTX2

0.18

ALOX5

1.83

S100P

0.08

IFITM1

2.03

ASS1

1.4

IRF9

1.34

DMBT1

0.17

OAZ1

1.83

RARRES3

0.08

NMI

3.47

HSPA5

1.34

HYOU1

1.32

OLFM4

0.15

ZNF189

1.82

CXCL1

0.07

RARRES3

1.96

ADM

− 1.34

CXCL1

1.2

CSF2RB

0.15

STAT3

1.82

DEFA6

0.05

MAP2K1

0.93

C4BPB

1.33

NPTX2

1.14

COL6A3

− 0.12

ZNF143

1.82

REG3A

0.05

LYN

1.54

ISG20

1.31

CD55

1.1

PCK1

− 0.11

GPR161

1.82

CHAD

0.05

STAT3

1.35

SDCBP

1.25

RARRES3

0.94

SERPINA3

− 0.08

SWAP70

1.82

VOPP1

0.04

TIMP1

1.23

REG1B

− 1.19

ISG20

0.86

CLDN8

− 0.05

ME1

1.82

CD19

0.04

CD55

1.45

TRIM22

− 1.17

CD19

0.86

COL4A2

0.04

BIRC3

1.82

PCK1

0.04

HLA-DMA

2.11

SERPINA3

1.09

HLA-DRA

0.85

SPINK4

− 0.04

ADRA2A

1.81

HLA-DRA

0.04

S100A8

0.64

CTSK

1.07

SELL

0.81

  1. LASSO, Least Absolute Shrinkage and Selection Operator; PCA, principal component analysis; GBM, Gradient boosting machine; RF, Random forest; NN, Neural network, SVM, Support Vector Machine.
  2. Different MLS process different weights, and negative weights in LASSO and NN that we sort the weighted genes with absolute value.