Table 3 Theoretical and LCP results of impulsively loaded beam with bending shear interaction.

From: Flexure and shear response of an impulsively loaded rigid-plastic beam by enhanced linear complementarity approach

 

Theoretical solution, Jones34

Numerical solution (100 uniform mass elements)

Numerical solution (100 uniform mass elements)

Error (100 lumped mass elements) (%)

Error (100 uniform mass elements) (%)

Final displacement \(\overline{W}_{f} = \left( {W_{f} /L} \right)\left( {mL} \right)M_{p} /I^{2}\)

0.08333

0.08352

0.08345

-0.22801

-0.14401

Time when shear-sliding ceases \(\overline{t}_{1} = M_{p} t_{1} /IL\)

0.06322

0.06286

0.06325

0.56944

-0.04745

Time when hinges coalesce \(\overline{t}_{2} = M_{p} t_{2} /IL\)

0.08333

0.08020

0.08198

-0.07200

2.65211

Cessation time \(\overline{t}_{3} = M_{p} t_{3} /IL\)

0.25

0.25

0.25

0

0