Table 1 Character table of the group \(C_{3h}\) with \(\xi ^3=1\). Two common notations are used for the IRs of the single and double group. The reduction of symmetry from \(D_{3h}\) to \(C_{3h}\) is accompanied by the compatibility relations \(A_1^{\prime },A_2^{\prime }\rightarrow A^{\prime }\), \(E^{\prime }\rightarrow E_1^{\prime }\bigoplus E_2^{\prime }\), \(A_1^{\prime \prime },A_2^{\prime \prime }\rightarrow A^{\prime \prime }\), \(E^{\prime \prime }\rightarrow E_1^{\prime \prime }\bigoplus E_2^{\prime \prime }\), \(E_{1/2}\rightarrow {^1}E_{1/2}\bigoplus {^2}E_{1/2}\), \(E_{3/2}\rightarrow {^1}E_{3/2}\bigoplus {^2}E_{3/2}\), and \(E_{5/2}\rightarrow {^1}E_{5/2}\bigoplus {^2}E_{5/2}\).

From: First-principles study of the electronic and optical properties of Ho\(_{\text{W}}\) impurities in single-layer tungsten disulfide

\(C_{3h}\)

E

\(C_{3}\)

\(C_{3}^2\)

\(\sigma _{h}\)

\(S_{3}\)

\(S_{3}^5\)

linear

quadratic

\(A^{\prime }\)

\(\Gamma _1\)

1

1

1

1

1

1

\(R_z\)

\(x^2+y^2\), \(z^2\)

\(A^{\prime \prime }\)

\(\Gamma _4\)

1

1

1

−1

−1

−1

z

 

\(E^{\prime }_{1}\)

\(\Gamma _2\)

1

\(\xi\)

\(\xi ^2\)

1

\(\xi\)

\(\xi ^2\)

\(x+iy\)

\((x^2-y^2,xy)\)

\(E^{\prime }_{2}\)

\(\Gamma _3\)

1

\(\xi ^2\)

\(\xi\)

1

\(\xi ^2\)

\(\xi\)

\(x-iy\)

\(E^{\prime \prime }_{1}\)

\(\Gamma _5\)

1

\(\xi\)

\(\xi ^2\)

−1

\(-\xi\)

\(-\xi ^2\)

\(R_x+iR_y\)

(xz, yz)

\(E^{\prime \prime }_{2}\)

\(\Gamma _6\)

1

\(\xi ^2\)

\(\xi\)

−1

\(-\xi ^2\)

\(-\xi\)

\(R_x-iR_y\)

\(^1E_{1/2}\)

\(\Gamma _7\)

1

\(-\xi ^2\)

\(-\xi\)

i

\(i\xi ^2\)

\(-i\xi\)

\(\left| \frac{1}{2},\frac{1}{2}\right\rangle ,\left| \frac{3}{2},\frac{1}{2}\right\rangle\)

\(^2E_{1/2}\)

\(\Gamma _8\)

1

\(-\xi\)

\(-\xi ^2\)

\(-i\)

\(-i\xi\)

\(i\xi ^2\)

\(\left| \frac{1}{2},-\frac{1}{2}\right\rangle ,\left| \frac{3}{2},-\frac{1}{2}\right\rangle\)

\(^1E_{3/2}\)

\(\Gamma _{11}\)

1

\(-1\)

\(-1\)

i

i

\(-i\)

\(\left| \frac{3}{2},\frac{3}{2}\right\rangle ,\left| \frac{5}{2},\frac{3}{2}\right\rangle\)

\(^2E_{3/2}\)

\(\Gamma _{12}\)

1

\(-1\)

\(-1\)

\(-i\)

\(-i\)

i

\(\left| \frac{3}{2},-\frac{3}{2}\right\rangle ,\left| \frac{5}{2},-\frac{3}{2}\right\rangle\)

\(^1E_{5/2}\)

\(\Gamma _9\)

1

\(-\xi\)

\(-\xi ^2\)

i

\(i\xi\)

\(-i\xi ^2\)

\(\left| \frac{5}{2},\frac{5}{2}\right\rangle\)

\(^2E_{5/2}\)

\(\Gamma _{10}\)

1

\(-\xi ^2\)

\(-\xi\)

\(-i\)

\(-i\xi ^2\)

\(i\xi\)

\(\left| \frac{5}{2},-\frac{5}{2}\right\rangle\)