Table 2 Character table of the group \(D_{3h}\). Two common notations are used for the IRs of the single and double group.

From: First-principles study of the electronic and optical properties of Ho\(_{\text{W}}\) impurities in single-layer tungsten disulfide

\(D_{3h}\)

E

\(\sigma _{h}\)

\(2C_{3}\)

\(2S_{3}\)

\(3C_{2}\)

\(3\sigma _{v}\)

Linear

Quadratic

\(A^{\prime }_{1}\)

\(\Gamma _1\)

1

1

1

1

1

1

 

\(x^2+y^2\), \(z^2\)

\(A^{\prime }_{2}\)

\(\Gamma _2\)

1

1

1

1

−1

−1

\(R_z\)

 

\(A^{\prime \prime }_{1}\)

\(\Gamma _3\)

1

−1

1

−1

1

−1

  

\(A^{\prime \prime }_{2}\)

\(\Gamma _4\)

1

−1

1

−1

−1

1

z

 

\(E^{\prime }\)

\(\Gamma _6\)

2

2

−1

−1

0

0

(x, y)

\((x^2-y^2,xy)\)

\(E^{\prime \prime }\)

\(\Gamma _5\)

2

−2

−1

1

0

0

\((R_x,R_y)\)

(xz, yz)

\(E_{1/2}\)

\(\Gamma _7\)

\({\pm } 2\)

0

\(\pm 1\)

\(\pm \sqrt{3}\)

0

0

\(\left| \frac{1}{2},\pm \frac{1}{2}\right\rangle ,\left| \frac{3}{2},\pm \frac{1}{2}\right\rangle\)

\(E_{3/2}\)

\(\Gamma _9\)

\(\pm 2\)

0

\({\mp } 2\)

0

0

0

\(\left| \frac{3}{2},\pm \frac{3}{2}\right\rangle ,\left| \frac{5}{2},\pm \frac{3}{2}\right\rangle\)

\(E_{5/2}\)

\(\Gamma _8\)

\(\pm 2\)

0

\(\pm 1\)

\({\mp }\sqrt{3}\)

0

0

\(\left| \frac{5}{2},\pm \frac{5}{2}\right\rangle\)