Table 3 The values and relative error of viscosity for methane nanofluidic by the presented model.

From: Impact of complex boundary on the hydrodynamic properties of methane nanofluidic flow via non-equilibrium multiscale molecular dynamics simulation

State points

Nonslip boundary

Rough boundary

Experiment54

\(T\left( K \right)\)

\(\begin{gathered} \;\;\;\;\rho \hfill \\ \left( {{{kg} \mathord{\left/ {\vphantom {{kg} {m^{3} }}} \right. \kern-\nulldelimiterspace} {m^{3} }}} \right) \hfill \\ \end{gathered}\)

\(\begin{gathered} \;\;\;\;\;\eta_{{{\text{cal}}}} \hfill \\ \left( {{{\upmu {\text{g/cm}}}}\;{\text{s}}} \right) \hfill \\ \end{gathered}\)

\(\frac{{\eta_{{{\text{cal}}}} - \eta_{\exp } }}{{\eta_{\exp } }}\)

\(\begin{gathered} \;\;\;\;\;\eta_{{{\text{cal}}}} \hfill \\ \left( {{{\upmu {\text{g/cm}}}}\;{\text{s}}} \right) \hfill \\ \end{gathered}\)

\(\frac{{\eta_{{{\text{cal}}}} - \eta_{\exp } }}{{\eta_{\exp } }}\)

\(\begin{gathered} \;\;\;\;\;\eta_{\exp } \hfill \\ \left( {{{\upmu {\text{g/cm}}}}\;{\text{s}}} \right) \hfill \\ \end{gathered}\)

100

439.02

\({1433} \pm 24\)

\(- 0.083\)

\(1336 \pm 14\)

\(- 0.145\)

1563

110

424.97

\({1}0{87} \pm 13\)

\(- 0.111\)

\(1078 \pm 29\)

\(- 0.119\)

1223

120

410.13

\(847 \pm 12\)

\(- 0.139\)

\(795 \pm 29\)

\(- 0.192\)

984

130

394.29

\(716 \pm 16\)

\(- 0.113\)

\(664 \pm 30\)

\(- 0.177\)

807

140

377.15

\(652 \pm 17\)

\(- 0.025\)

\(613 \pm 27\)

\(- 0.084\)

669

150

358.19

\(496 \pm 18\)

\(- 0.111\)

\(477 \pm 21\)

\(- 0.145\)

558

160

336.59

\(454 \pm 18\)

\(- 0.022\)

\(430 \pm 18\)

\(- 0.073\)

464

170

310.77

\(396 \pm 15\)

\(0.042\)

\(384 \pm 22\)

\(0.011\)

380

180

276.58

\(299 \pm 13\)

\(- 0.003\)

\(301 \pm 17\)

\(0.003\)

300

190

200.20

\(179 \pm 12\)

\(- 0.043\)

\(199 \pm 15\)

\(0.064\)

187