Table 3 Predictive performance of central venous catheterization according to each modeling method using deep learning or machine learning technique for the combination of various features.
Features | Model | AUROC | AUPRC | F1-score |
---|---|---|---|---|
Preoperative data | DNN | 0.7527 ± 0.0022 | 0.2004 ± 0.0030 | 0.0499 ± 0.0091 |
XGBoost | 0.5131 ± 0.0005 | 0.0807 ± 0.0009 | 0.0520 ± 0.0017 | |
RF | 0.5152 ± 0.0010 | 0.0792 ± 0.0014 | 0.0608 ± 0.0037 | |
LR | 0.5156 ± 0.0006 | 0.0820 ± 0.0010 | 0.0620 ± 0.0023 | |
Laboratory data | DNN | 0.6966 ± 0.0054 | 0.1536 ± 0.0049 | 0.0026 ± 0.0017 |
XGBoost | 0.5154 ± 0.0006 | 0.0844 ± 0.0013 | 0.0608 ± 0.0025 | |
RF | 0.5167 ± 0.0008 | 0.0762 ± 0.0011 | 0.0681 ± 0.0028 | |
LR | 0.5016 ± 0.0001 | 0.0644 ± 0.0004 | 0.0080 ± 0.0007 | |
Operation code | DNN | 0.9308 ± 0.0012 | 0.6754 ± 0.0036 | 0.6400 ± 0.0055 |
XGBoost | 0.6673 ± 0.0016 | 0.3495 ± 0.0032 | 0.4918 ± 0.0036 | |
RF | 0.5361 ± 0.0118 | 0.1279 ± 0.0212 | 0.1241 ± 0.0384 | |
LR | 0.6257 ± 0.0014 | 0.2788 ± 0.0028 | 0.3962 ± 0.0036 | |
All features | DNN | 0.9261 ± 0.0097 | 0.6849 ± 0.0219 | 0.3687 ± 0.0658 |
XGBoost | 0.7062 ± 0.0015 | 0.4146 ± 0.0032 | 0.5699 ± 0.0032 | |
RF | 0.5371 ± 0.0076 | 0.1283 ± 0.0137 | 0.1337 ± 0.0255 | |
LR | 0.5057 ± 0.0004 | 0.0683 ± 0.0006 | 0.0248 ± 0.0016 |