Table 4 Reconstruction accuracy comparison of representative SR methods in terms of RMSE, MRAE and SAM on the BGU-HS and ARAD-HS datasets. Top two best results are highlighted in bold and underline respectively.

From: A survey on computational spectral reconstruction methods from RGB to hyperspectral imaging

Category

Method

BGU-HS

ARAD-HS

RMSE

MRAE

SAM

RMSE

MRAE

SAM

Dictionary learning

Sparse coding

51.48

0.0808

5.01

0.0331

0.0787

6.46

SR A+

26.09

0.0448

2.83

0.0226

0.0725

4.61

Linear CNN

HSCNN

17.006

0.0190

SR-2DNet

21.394

0.020

SR-3Dnet

20.010

0.018

U-Net

SRUNet

15.88

0.0156

1.11

0.0152

0.0395

2.74

SRMSCNN

19.28

0.0231

1.47

0.0235

0.0724

4.91

SRMXRUNet

0.0454

SRBFWU-Net

0.0151

0.0434

Dense network

SRTiramisuNet

20.98

0.0272

1.57

0.0251

0.0850

4.34

HSCNN-R

13.911

0.0145

1.05

0.0143

0.0372

2.63

HSCNN-D

13.128

0.0135

0.99

Attention network

SRAWAN

10.24

0.0114

0.0111

0.0312

2.16

SRHRNet

1.01

0.0135

0.0423

2.53