Table 1 Computed dissociation limits for S\(_2^{2+}\) leading to two S\(^{+}\) fragments in their ground and excited states \(^{4}\)S\(_{\mathrm {u}}\), \(^{2}\)D\(_{\mathrm {u}}\) and \(^{2}\)P\(_{\mathrm {u}}\) arising from the \(3s^{2}3p^{3}\) configuration. The lowest asymptote is located experimentally as 25.14 eV above the vibrational ground state of neutral S\(_2\)17,21. The adiabatic double ionisation energy of S\(_2\) is calculated as 26.31 eV, lying 1.18 eV above the lowest asymptote. The reference energy is that of S\(_2\) (X\(^{3}\Sigma _{\mathrm {g}}^{-}\)) \(v = 0\).

From: An experimental and theoretical characterization of the electronic structure of doubly ionised disulfur

Dissociation fragments

Energy (eV)

Molecular states

S\(^+\)(\(^{4}\)S\(_{\mathrm {u}}\)) + S\(^+\)(\(^{4}\)S\(_{\mathrm {u}}\))

25.14

\(^{1}\Sigma _{\mathrm {g}}^{+}\), \(^{3}\Sigma _{\mathrm {u}}^{+}\), \(^{5}\Sigma _{\mathrm {g}}^{+}\), \(^{7}\Sigma _{\mathrm {u}}^{+}\)

S\(^+\)(\(^{4}\)S\(_{\mathrm {u}}\)) + S\(^+\)(\(^{2}\)D\(_{\mathrm {u}}\))

26.98

\(^{3,5}(\Sigma ^{+},\Pi ,\Delta )_{u,g}\)

S\(^+\)(\(^{4}\)S\(_{\mathrm {u}}\)) + S\(^+\)(\(^{2}\)P\(_{\mathrm {u}}\))

28.19

\(^{3,5}(\Sigma ^{-},\Pi )_{u,g}\)

S\(^+\)(\(^{2}\)D\(_{\mathrm {u}}\)) + S\(^+\)(\(^{2}\)D\(_{\mathrm {u}}\))

28.82

\(^{1}(\Sigma ^{+}_{\mathrm {g}}(3), \Sigma ^{-}_{\mathrm {u}}(2), \Pi _{\mathrm {g}}(2),\Pi _{\mathrm {u}}(2), \Delta _{\mathrm {g}}(2), \Delta _{\mathrm {u}}, \Phi _{\mathrm {g}}, \Phi _{\mathrm {u}}, \Gamma _{\mathrm {g}})\),

\(^{3}(\Sigma ^{+}_{\mathrm {u}}(3), \Sigma ^{-}_{\mathrm {g}}(2), \Pi _{\mathrm {g}}(2),\Pi _{\mathrm {g}}(2), \Delta _{\mathrm {g}}, \Delta _{\mathrm {u}}(2), \Phi _{\mathrm {g}}, \Phi _{\mathrm {u}}, \Gamma _{\mathrm {u}})\)

S\(^+\)(\(^{2}\)D\(_{\mathrm {u}}\)) + S\(^+\)(\(^{2}\)P\(_{\mathrm {u}}\))

30.02

\(^{1,3}(\Sigma ^{+}, \Sigma ^{-}(2), \Pi (3),\Delta (2), \Phi )_\mathrm {u,g}\)

S\(^+\)(\(^{2}\)P\(_{\mathrm {u}}\)) + S\(^+\)(\(^{2}\)P\(_{\mathrm {u}}\))

31.22

\(^{1}(\Sigma ^{+}_{\mathrm {g}}(2), \Sigma ^{-}_{\mathrm {u}}, \Pi _{\mathrm {g}},\Pi _{\mathrm {u}}, \Delta _{\mathrm {g}})\),

\(^{3}(\Sigma ^{+}_{\mathrm {u}}(2), \Sigma ^{-}_{\mathrm {g}}, \Pi _{\mathrm {g}},\Pi _{\mathrm {u}}, \Delta _{\mathrm {u}})\)