Table 5 The numerical results with the published work for \(M,\,\,K, \mathrm{and\,\, \phi }=0\).

From: Thin film flow and heat transfer of Cu-nanofluids with slip and convective boundary condition over a stretching sheet

 

Wang47

Abel et al.48

Li et al.46

Present

S

\(\beta\)

\(f^{\prime\prime}\left( 0 \right)\)

\(\beta\)

\(f^{\prime\prime}\left( 0 \right)\)

\(\beta\)

\(f^{\prime\prime}\left( 0 \right)\)

\(\beta\)

\(f^{\prime\prime}\left( 0 \right)\)

0.4

5.12249

− 1.30778

4.98146

− 1.13409

4.98146

− 1.134

4.98147

− 1.13409

0.6

3.13125

− 1.19516

3.13171

− 1.19513

3.13192

− 1.195

3.13171

− 1.19512

0.8

2.15199

− 1.24579

2.15199

− 1.24580

2.15237

− 1.246

2.15202

− 1.24581

1.0

1.54362

− 1.27776

1.54362

− 1.27777

1.54359

− 1.278

1.54362

− 1.27777

1.2

1.12778

− 1.27918

1.12278

− 1.27917

1.12778

− 1.279

1.12778

− 1.27917

1.4

0.82103

− 1.23355

0.82210

− 1.23354

0.82103

− 1.234

0.82103

− 1.23354

1.6

0.57617

− 1.11494

0.57617

− 1.11494

0.57617

− 1.115

0.57617

1.114937

1.8

0.35639

− 0.86741

0.35639

− 0.86742

0.35639

− 0.8674

0.35639

0.867410