Table 2 Prehospital diagnostic algorithms for acute coronary syndrome using 43 features.

From: Prehospital diagnostic algorithm for acute coronary syndrome using machine learning: a prospective observational study

Models

AUC

Sensitivity

Accuracy

Specificity

F1-score

PPV

NPV

Training score

XGBoost

0.887

0.819

0.887

0.826

0.755

0.712

0.890

Logistic regression

0.893

0.818

0.893

0.807

0.762

0.698

0.906

Random forest

0.922

0.860

0.922

0.874

0.805

0.781

0.909

SVM (Linear)

0.894

0.822

0.894

0.823

0.762

0.713

0.898

SVM (radial basis function)

0.902

0.842

0.902

0.836

0.790

0.737

0.916

MLP

0.893

0.829

0.893

0.826

0.772

0.722

0.905

LDA

0.890

0.826

0.890

0.834

0.763

0.723

0.894

LGBM

0.894

0.823

0.894

0.819

0.764

0.711

0.902

Voting

0.927

0.852

0.927

0.839

0.804

0.744

0.928

Test score

XGBoost

0.849

0.756

0.792

0.811

0.715

0.684

0.864

Random forest

0.850

0.755

0.798

0.821

0.725

0.711

0.865

Logistic regression

0.843

0.740

0.780

0.801

0.703

0.693

0.857

SVM (Linear)

0.847

0.745

0.789

0.813

0.709

0.690

0.861

SVM (radial basis function)

0.834

0.735

0.791

0.821

0.708

0.687

0.855

MLP

0.834

0.709

0.786

0.826

0.695

0.695

0.846

LDA

0.860

0.761

0.802

0.823

0.727

0.706

0.870

LGBM

0.841

0.756

0.778

0.791

0.705

0.671

0.860

Voting

0.861

0.772

0.803

0.821

0.733

0.711

0.873

External cohort score

XGBoost

0.840

0.897

0.790

0.697

0.800

0.722

0.885

Random forest

0.803

0.690

0.726

0.758

0.702

0.714

0.735

Logistic regression

0.831

0.793

0.758

0.727

0.754

0.719

0.800

SVM (Linear)

0.838

0.793

0.758

0.727

0.754

0.719

0.800

SVM (radial basis function)

0.808

0.828

0.742

0.667

0.750

0.686

0.815

MLP

0.818

0.793

0.758

0.727

0.754

0.719

0.800

LDA

0.832

0.862

0.774

0.697

0.781

0.714

0.852

LGBM

0.789

0.552

0.742

0.909

0.667

0.842

0.698

Voting

0.828

0.862

0.790

0.727

0.794

0.735

0.857

  1. AUC (area under the receiver operating characteristic curve), LDA (linear discriminant analysis), LGBM (light gradient boosting machine), MLP (multilayer perceptron), NPV (negative predictive values), PPV (posititive predictive values), SVM (support vector machine), XGBoost (eXtreme Gradient Boosting).