Table 1 Data scaling techniques used in this work.

From: Cost function for low-dimensional manifold topology assessment

Name

Scaling factor \(d_j\)

Center \(c_j\)

None

1

0

Auto51

\(s_j\)

\(\bar{X}_j\)

Pareto52

\(\sqrt{s_j}\)

\(\bar{X}_j\)

VAST49

\(s_j^2 / \bar{X}_j\)

\(\bar{X}_j\)

Range51

\(\text {max}(X_j) - \text {min}(X_j)\)

\(\bar{X}_j\)

\(\langle 0, 1 \rangle\)

\(\text {max}(X_j) - \text {min}(X_j)\)

\(\text {min}(X_j)\)

\(\langle -1, 1 \rangle\)

\(1/2 (\text {max}(X_j) - \text {min}(X_j))\)

\(1/2 (\text {max}(X_j) + \text {min}(X_j))\)

Level51

\(\bar{X}_j\)

\(\bar{X}_j\)

Max

\(\text {max}(X_j)\)

\(\bar{X}_j\)

Poisson50

\(\sqrt{\bar{X}_j}\)

\(\bar{X}_j\)

S1

\(s_j^2 k_j^2 / \bar{X}_j\)

\(\bar{X}_j\)

S2

\(s_j^2 k_j^2 / \text {max}(X_j)\)

\(\bar{X}_j\)

S3

\(s_j^2 k_j^2 / ( \text {max}(X_j) - \text {min}(X_j))\)

\(\bar{X}_j\)