Table 2 Heterogeneous cake-cutting using the weighted Boltzmann division.

From: The Boltzmann fair division for distributive justice

Player

\({\mathbf{E}}_{{\mathbf{j}}}\)

\({\mathbf{D}}_{{\mathbf{j}}}\)

Homogeneous

\(\left( {{\mathbf{N}}_{{\mathbf{j}}} } \right)\)

Heterogeneous

Diff

Vanilla

\(\left( {{\mathbf{N}}_{{\mathbf{j}}}^{{\mathbf{1}}} } \right)\)

Chocolate

\(\left( {{\mathbf{N}}_{{\mathbf{j}}}^{{\mathbf{2}}} } \right)\)

Strawberry

\(\left( {{\mathbf{N}}_{{\mathbf{j}}}^{{\mathbf{3}}} } \right)\)

Broccoli

\(\left( {{\mathbf{N}}_{{\mathbf{j}}}^{{\mathbf{4}}} } \right)\)

Total \(\left( {{\mathbf{N}}_{{\mathbf{j}}} } \right)\)

1

5

4

12.17

2.61

2.27

3.29

5.50

13.67

1.50

2

10

10

14.06

6.03

2.62

3.80

0.00

12.44

−1.62

3

20

24

18.75

0.00

13.94

0.00

0.00

13.94

−4.81

4

25

34

21.66

9.26

0.00

0.00

19.50

28.75

7.10

5

40

53

33.36

7.11

6.17

17.91

0.00

31.19

−2.17

Total

100

125

100

25

25

25

25

100

0

  1. \(\mathrm{E}_{\mathrm{j}}\) = Contribution to cake production of player j
  2. \(\mathrm{D}_{\mathrm{j}}\) = Need for cake of player j
  3. \(\mathrm{N}_{\mathrm{j}}^{\mathrm{i}}\) = Cake share of flavor i allocated to player j
  4. Diff (Difference) = Heterogeneous \(\left( {\mathrm{N}_{\mathrm{j}} } \right)\)—Homogeneous \(\left( {\mathrm{N}_{\mathrm{j}} } \right)\).