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Structural design and effect 
analysis on a new type of hydraulic 
oscillator driven with double valve 
groups
Hou Lingxia1, Sun Qiaolei1,2*, Deng Long1, Liu Yuwei1 & Feng Ding1,2

A new hydraulic oscillator was designed, which was able to adjust pressure fluctuations through 
two sets of dynamic and fixed valves. Hydraulic oscillators can meet the frequency and axial force 
requirements of drilling at lower drilling fluid flow than general hydraulic oscillators. Oscillator 
structure was described in detail and over-flow area between the two sets of dynamic and fixed valves 
was calculated. Based on drilling fluid flow difference, the influence of different fluid flows on oscillator 
pressure drops was analyzed, its influence law was determined by the finite element software Fluent, 
and its effect was verified by numerical simulations. The related research is of great significance in the 
selection of dynamic and fixed valves and provides the theoretical basis for the optimization of the 
structural parameters of double-valve hydraulic oscillators.

Static friction between drilling tool and borehole wall is increased with the increase of well depth and horizontal 
section in conventional drilling processes1,2, which seriously affects drill bit rock, drilling tool life, and drilling 
speed and even causes downhole accidents such as sticking, drilling, etc.3–5. Many research works have been 
conducted around the world on reducing the frictional resistance of drilling6–8 and hydraulic oscillators are one 
of the most interesting technologies9,10.

The hydraulic action of hydraulic oscillators causes axial vibration in drilling assembly, which can transform 
the static friction of drilling assembly into dynamic friction. In this way, the backing pressure of horizontal well 
can be effectively solved and drilling speed was improved. Zhang et al.11 introduced a self-excited hydraulic 
oscillator and experimentally analyzed its frequency and amplitude characteristics. Xu12 and Liu et al.13 evalu-
ated the effect of self-oscillating rotary percussion drilling tools in the field. Liu et al.14 designed a new type of 
hydraulic oscillator with axial vibration induced by hydraulic pulse and experimentally described its structure and 
principle. Li et al.15 developed a hydraulic oscillator for φ215 mm borehole and carried out indoor simulations 
and field experiments. Wang et al.16 designed a hydraulic oscillator and investigated its material and structure. 
The effect of hydraulic oscillator is demonstrated by thrust load, pressure frequency test and field application.

According to the numerical solutions of the Navier–Stokes equations from Fluent modeling and experi-
mental in the system “Pipeline Fittings”, Karpenko et al.17 analyzed the influence of hydrodynamic processes 
on the development of the turbulent flow of a fluid. Yu et al.18 designed a hydraulic oscillator and analyzed its 
key mechanical parameters, changing law and vibration characteristics. Richard19, Liu20, Leus21, Wicks22 were 
proposed different models of axial vibrations for hydraulic oscillator analysis.

However, in order to achieve the requirements of oscillation force, frequency, etc., most of the studied hydrau-
lic oscillators required more than 30 L/s drilling fluid23,24; therefore, large flow drilling pump or additional drill-
ing pumps were needed. Hence, we designed a hydraulic oscillator driven with double valve group suitable for 
drilling fluid flows of less than 30 L/s.

Design of a hydraulic oscillator driven with double valve group
The structure of hydraulic oscillator.  The core of a hydraulic oscillator driven with double valve group 
consists of two parts, i.e., the upper section of oscillator and the lower end of drive section. As shown in Fig. 1, 
oscillation section was mainly composed of spline spindle, spline sleeve, disc spring, compression nut, oscillating 
shell, etc. Also, its main function was to convert pressure wave coming from the lower end to oscillating axial 
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force of vibrating shell through disc spring. As can be seen in Fig. 2, drive section was mainly consisted of central 
shaft, turbine group, alignment bearings, dynamic valve, splitter lip, and thrust bearings. Oscillation section was 
connected with drive section through the screw thread. The main function of drive section was rotating center 
shaft by a turbine set to modulate periodic harmonic waves through periodically changing flow channel by the 
rotation of dynamic valves.

Working principle.  Figure 3 shows the overall structure of hydraulic oscillators driven with double valve 
groups. Oscillator spline spindle top connected upper drill string. The lower shell of oscillator connected lower 
drill pipe. Oscillator power was supplied from drilling fluid, which transformed the liquid energy of drilling 
fluid into high-speed mechanical energy through turbine stator and rotor and the rotation of central shaft in 
drive section was driven by turbine rotor. The rotation of central shaft rotated e dynamic valves and over-flow 
area between dynamic and fixed valves was periodically changed during rotation. The maximum pressure drop 
was observed for minimum over-flow area and minimum pressure drop was witnessed for maximum over-flow 
area. The resulting pressure wave acted the compression nut in oscillation section; therefore, different pressures 
between the upper and lower end faces of compression nut generated an axial force. Axial force caused butterfly 
spring to continuously compress and recover to save and release energy. This made oscillating joint axially recip-
rocated and drill tool generated high frequency axial creep.

Structural advantages. 

(1)	 Turbine drive section was consisted of a pure metal component, which had some advantages such as high 
temperature resistance, strong erosion resistance, long service life and high efficiency over screw-driven 
hydraulic oscillators.

(2)	 Double-valve groups with double-flow change traditional single channel by splitter lip, pressure wave 
was modulated by two sets of valve groups, and pressure fluctuation was changed by adjusting angle and 
distance between fixed valves. Different pressure amplitudes and appropriate oscillation forces could be 

Figure 1.   The oscillation section of oscillator.

Figure 2.   The drive section of oscillator.

1- spline spindle 2- spline sleeve 3- disc spring 4- compression nut 5- oscillating shell 6-upper alignment bearing 7-lower 

alignment bearing 8- dynamic valve • 9- dynamic valve • 10-splitter lip 11-splitter sleeve 12-thrust bearings 13-lower shell 14- 

power shell 15- turbine shaft 16- sleeve 17-fixed valve • 18-fixed valve • 19- turbine rotor 20- turbine stator 21-compression 

sets 22-seals 

Figure 3.   The structure of hydraulic oscillator driven with double valve groups.
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generated under the condition of constant flow rate, which made it easier to meet field requirements with 
lower liquid flow rates.

(3)	 Reasonably flow channels of the valves. The structure of valve plate was optimized through actual operating 
conditions of the oscillator and flow channel characteristics. It can split the impurity in the drilling fluid 
by a certain flow area of the export channel which in the left of the valve port when the rotor rotates to a 
fully closed state.

Analysis of the key structural parameters of oscillators
Calculation of the flow area of valve assembly.  Analysis one valve group for the hydraulic oscil-
lator since the structure of the double valve groups are the same, and the structures of dynamic and fixed 
valves are shown in Fig. 4. The flow channels of valves were central symmetry, with flow channel outer diam-
eter r2 , flow channel inner diameter r1 , the angle of standard annular region θ0 , and circle radii on both sides 
r3, r3 = (r2 − r1)/2 . The whole dynamic valve rotation process was divided into five stages based on the change 
of flow channels in one cycle (rotation radian of π ), as shown in Fig. 5.

Rotation process was illustrated by taking the following assumptions: the left channel of the fixed valve as the 
initial position of calculation, dynamic and fixed valves coincided at initial position, and dynamic valve rotated 
at a constant speed in work process. The left channel front of the dynamic valve did not intersect with the right 
channel of the fixed valve in the first stage. The left channel front of the dynamic valve t intersected with the 
right channel of the fixed valve in the second stage, intersection area s1 was greater than πr23 and intersection 
area s2 was less than πr23 . The left channel front of the dynamic valve intersected with the right channel of the 
fixed valve in the third stage and intersection areas s1 and s2 were greater than πr23 in the third stage. However, in 
the fourth stage, intersection area s1 was smaller than πr23 and intersection area s2 was greater than πr23 . The left 
channel end of the dynamic valve did not intersect with the left channel of the fixed valve in the fifth stage and 
intersection area was s.The intersect dynamic valve left channel completely coincident with the right channel 
of the fixed valve and the intersect of dynamic valve right channel totally coincided with the left channel of the 
fixed valve at the end of one cycle, while rotation radian of dynamic valve was π.

The angular velocity of dynamic valve was assumed to be ω and rotation time was t  . Flow channels area 
between the valves was calculated as follows.

Figure 4.   The structures of dynamic and fixed valves.

a) first stage   b) third stage  c) fifth stage d) second stage e) fourth stage 

Figure 5.   The variation of flow channels in one cycle.
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where θ1 is the angle between tangent line which is the origin point to the sides circle of the valve and the line 
which is the origin point to the center of the sides circle, θ1 = arcsin r3

r0
,where r0 is the radius of flow channel pitch 

circle, r0 = (r2 + r1)/2 . β is the angle between the two radii which are the center of the side circle to the inter-
section points of the dynamic and fixed valves.β in the second and fourth stages could be calculated as follows.

Flow channel areas had to change all the time depending on field application requirements which could ensure 
that pressure drop between valve plates could be continuously changed so that disc spring could produce periodic 
changes. Therefore, the shorter the third stage, the better. Finally, this tool was designed for θ0 = π/2 to make 
sure that the time of the third stage was 0 and flow channel areas could be simplified as follows.

Influence of inlet flow rate on pressure drop in valve group.  The axial forces and pressure fluctua-
tions of double-valve driving hydraulic oscillators were mainly produced by the change of flow channel between 
dynamic and fixed valves. Since both valve groups produced pressure drops, pressure fluctuations in oscillator 
segments generated superposition effects enhancing their performance. One valve group was adopted for analy-
sis and instantaneous pressure drops between dynamic and fixed valves followed thin hole theory.

where Cd is flow coefficient which is in the range of 0.6 to 0.8, ρ is drilling fluid density (kg/m3), Q is flow drilling 
fluid (m3/s), A is flow channel area (m2), and �p is the pressure drops of valve group (Pa).

Equation (4) was as follows.

Equation (5) shows that the flow area of valve group could be controlled to change pressure drop by chang-
ing valve parameters in the design. Due to the limits of valve material, upper working pressure drop, working 
environment, etc., the maximum pressure fluctuation could not be too high. In order to meet actual pressure 
fluctuations, the maximum pressure drop �pmax corresponded to the minimum flow area Amin and the maximum 
pressure drop �pmin corresponded to the minimum flow area Amax ; Amax and Amin could be calculated as follows.

Field applications showed that the maximum hydraulic pressure consumption of hydraulic oscillator was 
supposed to be not greater than 4 MPa due to the restriction of underground space, relatively compact downhole 
tool structure, structure size limitation of rotary valve, etc.25,26. Therefore, the maximum pressure drop of one 
valve group was taken as 3.20 MPa considering turbine joint and local pressure loss. Combined with the external 
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diameter of oscillator and the demand of maximum and minimum pressure drops of one valve group, the radii 
of valve plate were determined to be 70 mm, r2 = 42.5 mm,r1 = 30 mm, r0 = 36.25 mm, r3 = 3.25 mm, assuming 
ρ = 1200 kg/m3 and Cd = 0.8. Flow area was calculated by MATLAB software at each stage and the change rules 
of flow area is shown in Fig. 6. It could be calculated that Amax = 1669mm2 and Amin = 490.88mm2.

Based on the analysis of the relationship between pressure drop and drilling fluid flow in hydraulic oscilla-
tors, the flow of drilling fluid to select field commonly used drilling fluid, flow respectively 20 L/s, 25 L/s, 28 L/s, 
30 L/s, 32 L/s. Pressure drop change law with inlet flow was solved by MATLAB for two development of relative 
program, as shown in Fig. 7.

The variations of maximum and minimum pressure drops with flow rate are shown in Fig. 8.
The designed hydraulic oscillator produced continuous pressure fluctuations in a single cycle. The maxi-

mum pressure drop corresponding to the five flows were 1.56 MPa, 2.43 MPa, 3.05 MPa, 3.5 MPa and 3.98 MPa 
respectively. When flow rate was 28 L/s, the maximum pressure consumption of the valve group was 3.05 MPa 
and the average pressure drop was 1.25 MPa, which met design requirements. Meanwhile, flow could be easily 
realized by the pump group at the same time.

Figure 6.   The change rules of flow area.

Figure 7.   Relationship between pressure drop and flow rate.
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Numerical simulation of hydraulic oscillator
In order to further study the performance of the design of double valve driving hydraulic oscillators, the work 
process of the fabricated hydraulic oscillator was simulated by the finite element software Fluent combined with 
the structure of hydraulic oscillator.

Selection of turbulence model.  Since the flow channel of double-valve driving hydraulic oscillator had 
multi-stage cross-section changes, fluid movement could be take the shape of rotary motion. Compared with 
standard k-turbulence model, RNG model takes into account rotation and swirl flows and it could better deal 
with high strain rate and flow of streamline27. Therefore, k-RNG turbulence model was selected for the numeri-
cal simulation of hydraulic oscillators.

Establishment of finite element model.  The 3D model of oscillator was built in SolidWorks software. 
For the sake of analysis before the analysis. The following basic assumptions were considered to simplify analysis, 
(1) numerical simulation mainly studied fluid pressure change in oscillating section; hence, the internal flow 
channel of oscillating section was fixed while modeling and spring effect was ignored. (2) To simplify the inter-
nal flow channel of drive section, turbine effect, righting bearing, thrust bearing and others were not taken into 
account. (3) Outlet of the lower part of the model of drive section was simplified. In addition, local refinement 
of flow channel was carried out and the final 3D model of flow channel is shown in Fig. 9.

The finished model was saved as an “xt” file and imported to Fluent of Workbench to divide the grid with 
node number of 504,777 and grid cell number of 2,505,046, as shown in Fig. 10.

After the completion of the mesh, the flow rate of drilling fluid (simulated with water) had to be translated into 
inlet speed to set the inlet boundary conditions combined with the actual operating conditions of the hydraulic 
oscillator. 20 cycles were considered and 25 data points were taken in each cycle. Based on theoretical design, 
dynamic valve speed was 8 r/s, outlet was set to free export, and the remaining boundary conditions were set in 
turn according to the actual parameters to complete the simulation.

Analysis results.  Outlet pressure, oscillation front end, first valve group front end, and second valve group 
back end were obtained. Oscillator pressure drop was defined as the difference in the pressures of first valve 
group front end and second valve group back end, as shown in Fig. 11. Theoretically, the simulated pressure drop 
was two times as high as that theoretically calculated with one single valve group. Simulation results showed that 
maximum and average pressure drops were 7.30 MPa and 1.81 MPa in 20 cycles of simulation, respectively. The 
highest maximum pressure drop in one cycle was two times the theoretical value with 6.10 MPa and the basic 
simulation law was almost consistent with theoretical calculation.

Summary and conclusion

(1)	 A new type of turbo-driven hydraulic oscillator was designed in which pressure fluctuations were generated 
by double valve groups and oscillation force demand could be generated at lower flow rates mainly. Based 
on the principle of pressure wave superposition, the maximum pressure drops of the new type of turbo-

Figure 9.   3D model of the flow channel of oscillator.

Figure 10.   The mesh diagram of the 3D model.
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driven hydraulic oscillator were 7.30 MPa in 20 cycles of simulation, which was two times the theoretical 
value with only one valve. The main structure of the designed oscillator was mad of pure metal components 
and its advantages include high temperature resistance, high erosion resistance, long service life and high 
efficiency.

(2)	 The whole rotation process of hydraulic oscillator was divided into five stages during dynamic valve rota-
tion based on flow channel changes in one cycle. The calculation model of valve flow area in five stages 
was established according to the geometrical model of each stage. The structural parameters of double 
valve group were designed based on the calculation model. Finally, on the basis of related parameters, the 
influences of different drilling fluid flows on the pressure drops of hydraulic oscillator were analyzed.

(3)	 According to the pressure drops of hydraulic oscillator solved by MATLAB, the change law of the pres-
sure drop under different drilling fluids was basically the same. While the flow rate from 20 to 32 L/s, the 
maximum pressure drop was approximately linear with the flow rate, the minimum pressure drop value 
to little change, and when flow rate was 28 L/s, the designed requirements was met.

(4)	 The finite element software Fluent was applied to simulate the hydraulic oscillator by establishing a 3D flow 
channel. Based on the principle of pressure wave superposition, the maximum pressure drops of the new 
type of turbo-driven hydraulic oscillator were 7.30 MPa in 20 cycles of simulation, and the results showed 
that pressure drop in double valve groups was two times that of a single valve group, which indicated the 
feasibility of turbo-driven hydraulic oscillators.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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