Table 2 Thermo-physical attributes of base fluid and nanoparticles45,46.

From: Significance of nanoparticles aggregation on the dynamics of rotating nanofluid subject to gyrotactic microorganisms, and Lorentz force

Properties

With aggregation

Without aggregation

viscosity \((\mu )\)

\(\frac{\mu _{n_f}}{\mu _{f}}={(1-\frac{\Phi _{ag}}{\Phi _{m}})^{2.5\Phi _m}}\)

\(\frac{\mu _{n_f}}{\mu _{f}}=\frac{1}{(1-\Phi )^{2.5}}\)

density \((\rho )\)

\(\rho _{n_f}=\rho _f(1-\Phi _{ag})+\Phi _{ag}\rho _s\)

\(\rho _{n_f}=\rho _f(1-\Phi )+\Phi \rho _s\)

Heat capacity\((\rho C_p)\)

\((\rho C_p)_{nf}=(\rho C_p)_f(1-\Phi _{ag})+\Phi _{ag}\frac{(\rho C_p)_s}{(\rho C_p)_f}\)

\((\rho C_p)_{nf}=(\rho C_p)_f(1-\Phi )+\Phi \frac{(\rho C_p)_s}{(\rho C_p)_f}\)

Thermal conductivity(\(\kappa\))

\(\frac{k_{n_f}}{k_f}=\frac{k_{ag}+2k_f-2\Phi _{ag}(k_f-k_{ag})}{k_{ag}+2k_f + \Phi _{ag}(k_f-k_{ag})}\)

\(\frac{k_{n_f}}{k_f}=\frac{k_s+2k_f-2\Phi (k_f-k_s)}{k_s+2k_f + \Phi (k_f-k_s)}\)