Table 1 StairNet architecture.

From: Deep leaning-based ultra-fast stair detection

Name

Type

Output size

Initial

Tensor slice

256 \(\times\) 256 \(\times\) 64

Bottleneck 1.0

Downsampling

128 \(\times\) 128 \(\times\) 256

Bottleneck 1.1

  

128 \(\times\) 128 \(\times\) 256

Bottleneck 1.2

  

128 \(\times\) 128 \(\times\) 256

Bottleneck 2.0

Downsampling

64 \(\times\) 64 \(\times\) 512

Bottleneck 2.1

Dilated (1,2) and (2,2)

64 \(\times\) 64 \(\times\) 512

Bottleneck 2.2

  

64 \(\times\) 64 \(\times\) 512

Bottleneck 2.3

Dilated (2,4) and (4,4)

64 \(\times\) 64 \(\times\) 512

Bottleneck 2.4

  

64 \(\times\) 64 \(\times\) 512

Bottleneck 2.5

Dilated (3,8) and (8,8)

64 \(\times\) 64 \(\times\) 512

Bottleneck 2.6

  

64 \(\times\) 64 \(\times\) 512

Bottleneck 2.7

Dilated (4,16) and (16,16)

64 \(\times\) 64 \(\times\) 512

Repeat bottlenecks 2.0 to 2.7 without downsampling operation of bottleneck 2.0

ASPP

  

64 \(\times\) 64 \(\times\) 512

Conv 3 \(\times\) 3

  

64 \(\times\) 64 \(\times\) 128

classification

location

classification

location

classification

location

Conv 3 \(\times\) 3

Conv 3 \(\times\) 3

  

64 \(\times\) 64 \(\times\) 128

64 \(\times\) 64 \(\times\) 128

Conv 1 \(\times\) 1

Conv 1 \(\times\) 1

  

64 \(\times\) 64 \(\times\) 2

64 \(\times\) 64 \(\times\) 8

 

Sigmoid

 

Activation

64 \(\times\) 64 \(\times\) 2

64 \(\times\) 64 \(\times\) 8

  1. The bottlenecks with downsampling have a stride = 2 in the 3 \(\times\) 3 convolution and the bottlenecks without downsampling have a stride = 1 in the 3 \(\times\) 3 convolution.