Table 1 Summarized results of the metrics of the seven models evaluated in a pilot test to support the decision-making process for the selection of a network.

From: Diagnostic performance of convolutional neural networks for dental sexual dimorphism

CNN model

Architecture

K-fold 5

Loss

Metrics

Accuracy

F1-score

Precision

Recall

Specificity

DenseNet121

100 epochs

Batch size=32

TL

Fold 1

0.7780

0.8327

0.8193

0.8203

0.8185

0.9213

Fold 2

0.6892

0.8227

0.7920

0.7920

0.7920

0.9112

Fold 3

0.6635

0.8114

0.7804

0.7808

0.7800

0.9121

Fold 4

0.7392

0.8162

0.8159

0.8169

0.8149

0.9320

Fold 5

0.6757

0.8262

0.8242

0.8261

0.8224

0.9334

Average

0.7091

0.8218

0.8064

0.8072

0.8056

0.9220

InceptionV3

100 epochs

Batch size=16

TL

Fold 1

0.8517

0.7640

0.7608

0.7649

0.7573

0.9037

Fold 2

0.5928

0.7640

0.7564

0.7615

0.7524

0.8953

Fold 3

0.7088

0.7503

0.7437

0.7464

0.7414

0.8988

Fold 4

0.6979

0.7712

0.7673

0.7715

0.7637

0.9095

Fold 5

0.6236

0.7599

0.7588

0.7679

0.7512

0.9043

Average

0.6950

0.7619

0.7574

0.7625

0.7532

0.9023

Xception

100 epochs

Batch size=32

TL

Fold 1

0.9429

0.7852

0.7749

0.7758

0.7740

0.9084

Fold 2

0.7903

0.8039

0.7732

0.7736

0.7728

0.9071

Fold 3

1.0323

0.7702

0.7603

0.7610

0.7596

0.9034

Fold 4

0.8688

0.8087

0.8079

0.8083

0.8075

0.9312

Fold 5

0.9424

0.7875

0.7871

0.7882

0.7862

0.9233

Average

0.9154

0.7911

0.7807

0.7814

0.7800

0.9147

InceptionResNetV2

100 epochs

Batch size=32

TL

Fold 1

0.9598

0.7915

0.7618

0.7629

0.7608

0.9053

Fold 2

0.9619

0.8127

0.8007

0.8024

0.7992

0.9142

Fold 3

0.9329

0.8064

0.7950

0.7955

0.7944

0.9132

Fold 4

0.8800

0.7962

0.7965

0.7968

0.7962

0.9272

Fold 5

0.7088

0.8324

0.8324

0.8336

0.8312

0.9387

Average

0.8886

0.8078

0.7973

0.7982

0.7964

0.9197

CNN model

Architecture

K-fold 5

Loss

Metrics

Accuracy

F1-score

Precision

Recall

Specificity

ResNet50

100 epochs

Batch size=32

TL

Fold 1

0.9303

0.7915

0.7626

0.7645

0.7608

0.9041

Fold 2

1.0381

0.8002

0.7881

0.7903

0.7860

0.9118

Fold 3

0.8592

0.8177

0.7872

0.7872

0.7872

0.9109

Fold 4

0.9334

0.8062

0.8066

0.8071

0.8062

0.9297

Fold 5

0.7910

0.8062

0.8072

0.8082

0.8062

0.9304

Average

0.9104

0.8043

0.7903

0.7915

0.7893

0.9174

ResNet101

100 epochs

Batch size=32

TL

Fold 1

0.9598

0.8014

0.7712

0.7721

0.7704

0.9064

Fold 2

0.8728

0.8102

0.7977

0.7987

0.7968

0.9175

Fold 3

0.9338

0.7952

0.7819

0.7827

0.7812

0.9110

Fold 4

0.8091

0.7962

0.7968

0.7989

0.7950

0.9229

Fold 5

0.8373

0.8075

0.8064

0.8067

0.8062

0.9308

Average

0.8826

0.8021

0.7908

0.7918

0.7899

0.9177

MobileNetV2

100 epochs

Batch size=32

TL

Fold 1

0.7950

0.7990

0.7682

0.7710

0.7656

0.9043

Fold 2

1.0042

0.7777

0.7501

0.7516

0.7487

0.8989

Fold 3

1.0015

0.7865

0.7752

0.7752

0.7752

0.9075

Fold 4

0.8395

0.7837

0.7838

0.7838

0.7837

0.9228

Fold 5

0.6802

0.8075

0.8086

0.8098

0.8075

0.9248

Average

0.8641

0.7909

0.7772

0.7783

0.7761

0.9117

VGG16

100 epochs

Batch size=32

TL

Fold 1

0.6843

0.8064

0.7769

0.7775

0.7764

0.9071

Fold 2

0.6431

0.8439

0.8125

0.8125

0.8125

0.9197

Fold 3

0.5552

0.8064

0.7949

0.7954

0.7944

0.9105

Fold 4

0.5840

0.7362

0.7376

0.7509

0.7262

0.8727

Fold 5

0.6014

0.7024

0.6990

0.7064

0.6924

0.8725

Average

0.6136

0.7791

0.7642

0.7685

0.7604

0.8965

  1. CNN convolutional neural network using transfer-learning architecture.