Table 1 Summarized results of the metrics of the seven models evaluated in a pilot test to support the decision-making process for the selection of a network.
From: Diagnostic performance of convolutional neural networks for dental sexual dimorphism
CNN model | Architecture | K-fold 5 | Loss | Metrics | ||||
---|---|---|---|---|---|---|---|---|
Accuracy | F1-score | Precision | Recall | Specificity | ||||
DenseNet121 100 epochs Batch size=32 | TL | Fold 1 | 0.7780 | 0.8327 | 0.8193 | 0.8203 | 0.8185 | 0.9213 |
Fold 2 | 0.6892 | 0.8227 | 0.7920 | 0.7920 | 0.7920 | 0.9112 | ||
Fold 3 | 0.6635 | 0.8114 | 0.7804 | 0.7808 | 0.7800 | 0.9121 | ||
Fold 4 | 0.7392 | 0.8162 | 0.8159 | 0.8169 | 0.8149 | 0.9320 | ||
Fold 5 | 0.6757 | 0.8262 | 0.8242 | 0.8261 | 0.8224 | 0.9334 | ||
Average | 0.7091 | 0.8218 | 0.8064 | 0.8072 | 0.8056 | 0.9220 | ||
InceptionV3 100 epochs Batch size=16 | TL | Fold 1 | 0.8517 | 0.7640 | 0.7608 | 0.7649 | 0.7573 | 0.9037 |
Fold 2 | 0.5928 | 0.7640 | 0.7564 | 0.7615 | 0.7524 | 0.8953 | ||
Fold 3 | 0.7088 | 0.7503 | 0.7437 | 0.7464 | 0.7414 | 0.8988 | ||
Fold 4 | 0.6979 | 0.7712 | 0.7673 | 0.7715 | 0.7637 | 0.9095 | ||
Fold 5 | 0.6236 | 0.7599 | 0.7588 | 0.7679 | 0.7512 | 0.9043 | ||
Average | 0.6950 | 0.7619 | 0.7574 | 0.7625 | 0.7532 | 0.9023 | ||
Xception 100 epochs Batch size=32 | TL | Fold 1 | 0.9429 | 0.7852 | 0.7749 | 0.7758 | 0.7740 | 0.9084 |
Fold 2 | 0.7903 | 0.8039 | 0.7732 | 0.7736 | 0.7728 | 0.9071 | ||
Fold 3 | 1.0323 | 0.7702 | 0.7603 | 0.7610 | 0.7596 | 0.9034 | ||
Fold 4 | 0.8688 | 0.8087 | 0.8079 | 0.8083 | 0.8075 | 0.9312 | ||
Fold 5 | 0.9424 | 0.7875 | 0.7871 | 0.7882 | 0.7862 | 0.9233 | ||
Average | 0.9154 | 0.7911 | 0.7807 | 0.7814 | 0.7800 | 0.9147 | ||
InceptionResNetV2 100 epochs Batch size=32 | TL | Fold 1 | 0.9598 | 0.7915 | 0.7618 | 0.7629 | 0.7608 | 0.9053 |
Fold 2 | 0.9619 | 0.8127 | 0.8007 | 0.8024 | 0.7992 | 0.9142 | ||
Fold 3 | 0.9329 | 0.8064 | 0.7950 | 0.7955 | 0.7944 | 0.9132 | ||
Fold 4 | 0.8800 | 0.7962 | 0.7965 | 0.7968 | 0.7962 | 0.9272 | ||
Fold 5 | 0.7088 | 0.8324 | 0.8324 | 0.8336 | 0.8312 | 0.9387 | ||
Average | 0.8886 | 0.8078 | 0.7973 | 0.7982 | 0.7964 | 0.9197 |
CNN model | Architecture | K-fold 5 | Loss | Metrics | ||||
---|---|---|---|---|---|---|---|---|
Accuracy | F1-score | Precision | Recall | Specificity | ||||
ResNet50 100 epochs Batch size=32 | TL | Fold 1 | 0.9303 | 0.7915 | 0.7626 | 0.7645 | 0.7608 | 0.9041 |
Fold 2 | 1.0381 | 0.8002 | 0.7881 | 0.7903 | 0.7860 | 0.9118 | ||
Fold 3 | 0.8592 | 0.8177 | 0.7872 | 0.7872 | 0.7872 | 0.9109 | ||
Fold 4 | 0.9334 | 0.8062 | 0.8066 | 0.8071 | 0.8062 | 0.9297 | ||
Fold 5 | 0.7910 | 0.8062 | 0.8072 | 0.8082 | 0.8062 | 0.9304 | ||
Average | 0.9104 | 0.8043 | 0.7903 | 0.7915 | 0.7893 | 0.9174 | ||
ResNet101 100 epochs Batch size=32 | TL | Fold 1 | 0.9598 | 0.8014 | 0.7712 | 0.7721 | 0.7704 | 0.9064 |
Fold 2 | 0.8728 | 0.8102 | 0.7977 | 0.7987 | 0.7968 | 0.9175 | ||
Fold 3 | 0.9338 | 0.7952 | 0.7819 | 0.7827 | 0.7812 | 0.9110 | ||
Fold 4 | 0.8091 | 0.7962 | 0.7968 | 0.7989 | 0.7950 | 0.9229 | ||
Fold 5 | 0.8373 | 0.8075 | 0.8064 | 0.8067 | 0.8062 | 0.9308 | ||
Average | 0.8826 | 0.8021 | 0.7908 | 0.7918 | 0.7899 | 0.9177 | ||
MobileNetV2 100 epochs Batch size=32 | TL | Fold 1 | 0.7950 | 0.7990 | 0.7682 | 0.7710 | 0.7656 | 0.9043 |
Fold 2 | 1.0042 | 0.7777 | 0.7501 | 0.7516 | 0.7487 | 0.8989 | ||
Fold 3 | 1.0015 | 0.7865 | 0.7752 | 0.7752 | 0.7752 | 0.9075 | ||
Fold 4 | 0.8395 | 0.7837 | 0.7838 | 0.7838 | 0.7837 | 0.9228 | ||
Fold 5 | 0.6802 | 0.8075 | 0.8086 | 0.8098 | 0.8075 | 0.9248 | ||
Average | 0.8641 | 0.7909 | 0.7772 | 0.7783 | 0.7761 | 0.9117 | ||
VGG16 100 epochs Batch size=32 | TL | Fold 1 | 0.6843 | 0.8064 | 0.7769 | 0.7775 | 0.7764 | 0.9071 |
Fold 2 | 0.6431 | 0.8439 | 0.8125 | 0.8125 | 0.8125 | 0.9197 | ||
Fold 3 | 0.5552 | 0.8064 | 0.7949 | 0.7954 | 0.7944 | 0.9105 | ||
Fold 4 | 0.5840 | 0.7362 | 0.7376 | 0.7509 | 0.7262 | 0.8727 | ||
Fold 5 | 0.6014 | 0.7024 | 0.6990 | 0.7064 | 0.6924 | 0.8725 | ||
Average | 0.6136 | 0.7791 | 0.7642 | 0.7685 | 0.7604 | 0.8965 |