Table 2 Specifics of the CNN architectures applied and tested in this study.

From: Diagnostic performance of convolutional neural networks for dental sexual dimorphism

Model

Size (MB)

Parameters (M)

Depth

Image size

Hyperparameters

Optimization algorithm

Batch size

Momentum

Weight decay

Learning rate

DenseNet121

33

8.1

121

224 × 224

SGD

32

0.9

1e-4 ~ 1e-6

Base Ir = 0.001

Max Ir = 0.00006

Step size = 100

Mode: triangular

ResNet50

98

25.6

107

224 × 224

ResNet101

171

44.7

209

224 × 224

Xception

88

22.9

81

299 × 299

InceptionV3

92

23.9

189

299 × 299

InceptionResNetV2

215

55.9

449

299 × 299

VGG16

526

138.4

16

224 × 224

MobileNetV2

14

3.5

105

224 × 224

  1. CNN Convolutional Neural Network, MB MegaBytes, M Million Parameters, SGD Stochastic Gradient Descent.