Table 5 Quantified performances of DenseNet121 with FS and TL architectures.

From: Diagnostic performance of convolutional neural networks for dental sexual dimorphism

CNN model

Architecture

K-fold 5

Metrics

Loss

Accuracy

F1-score

Precision

Recall

Specificity

DenseNet121

100 epochs

Batch size = 32

FS

Fold 1

0.6835

0.7215

0.7104

0.7272

0.6959

0.8705

Fold 2

0.6175

0.7166

0.6863

0.6916

0.6814

0.8627

Fold 3

0.6203

0.7141

0.7093

0.7133

0.7055

0.8719

Fold 4

0.6174

0.7200

0.7200

0.7284

0.7124

0.8840

Fold 5

0.7234

0.7099

0.7061

0.7187

0.6949

0.8844

Average

0.6524

0.7164

0.7064

0.7159

0.6980

0.8747

TL

Fold 1

0.7780

0.8327

0.8193

0.8203

0.8185

0.9213

Fold 2

0.6892

0.8227

0.7920

0.7920

0.7920

0.9112

Fold 3

0.6635

0.8114

0.7804

0.7808

0.7800

0.9121

Fold 4

0.7392

0.8162

0.8159

0.8169

0.8149

0.9320

Fold 5

0.6757

0.8262

0.8242

0.8261

0.8224

0.9334

Average

0.7091

0.8218

0.8064

0.8072

0.8056

0.9220

  1. FS from scratch, TL transfer learning.