Table 5 Quantified performances of DenseNet121 with FS and TL architectures.
From: Diagnostic performance of convolutional neural networks for dental sexual dimorphism
CNN model | Architecture | K-fold 5 | Metrics | |||||
---|---|---|---|---|---|---|---|---|
Loss | Accuracy | F1-score | Precision | Recall | Specificity | |||
DenseNet121 100 epochs Batch size = 32 | FS | Fold 1 | 0.6835 | 0.7215 | 0.7104 | 0.7272 | 0.6959 | 0.8705 |
Fold 2 | 0.6175 | 0.7166 | 0.6863 | 0.6916 | 0.6814 | 0.8627 | ||
Fold 3 | 0.6203 | 0.7141 | 0.7093 | 0.7133 | 0.7055 | 0.8719 | ||
Fold 4 | 0.6174 | 0.7200 | 0.7200 | 0.7284 | 0.7124 | 0.8840 | ||
Fold 5 | 0.7234 | 0.7099 | 0.7061 | 0.7187 | 0.6949 | 0.8844 | ||
Average | 0.6524 | 0.7164 | 0.7064 | 0.7159 | 0.6980 | 0.8747 | ||
TL | Fold 1 | 0.7780 | 0.8327 | 0.8193 | 0.8203 | 0.8185 | 0.9213 | |
Fold 2 | 0.6892 | 0.8227 | 0.7920 | 0.7920 | 0.7920 | 0.9112 | ||
Fold 3 | 0.6635 | 0.8114 | 0.7804 | 0.7808 | 0.7800 | 0.9121 | ||
Fold 4 | 0.7392 | 0.8162 | 0.8159 | 0.8169 | 0.8149 | 0.9320 | ||
Fold 5 | 0.6757 | 0.8262 | 0.8242 | 0.8261 | 0.8224 | 0.9334 | ||
Average | 0.7091 | 0.8218 | 0.8064 | 0.8072 | 0.8056 | 0.9220 |