Table 3 UAR and UF1 performance of different approach under LOSO protocol on different datasets.

From: Micro-expression recognition model based on TV-L1 optical flow method and improved ShuffleNet

Approach

MMEW

CASME II

SMIC

SAMM

UAR

UF1

UAR

UF1

UAR

UF1

UAR

UF1

LBP-TOP10

0.5628

0.5794

0.7429

0.7026

0.5280

0.2000

0.4102

0.3954

LBP-SIP13

0.5208

0.5174

0.5281

0.5369

0.5142

0.4452

0.4169

0.4412

Bi-WOOF17

–

–

0.5382

0.7805

–

0.5727

–

0.5211

HOOF18

0.5814

0.5982

0.5782

0.5874

0.5696

0.5574

0.5877

0.5639

CapsuleNet43

0.7296

0.7115

0.7018

0.7068

0.5877

0.5820

0.5927

0.6520

CNN-LSTM22

–

–

0.4125

0.4113

0.4276

0.4150

0.3086

0.3020

NMER44

0.3414

0.4253

0.6929

0.7624

0.5555

0.5607

04,894

0.6389

RCN-Best32

–

–

0.6600

0.6584

0.8131

0.8653

0.6771

0.7647

TSCNN21

–

–

0.6009

0.6124

0.5924

0.5839

0.6103

0.6083

MobileNetV242

–

–

0.6328

0.6125

0.6368

0.6589

0.6236

0.6614

DeiT39

0.6921

0.6882

0.6814

0.6994

0.6881

0.6970

0.7052

0.7028

Proposed method

0.6981

0.7318

0.6997

0.7251

0.7356

0.7141

0.6781

0.7428

  1. The optimal results of two experiments on different datasets are shown in bold.