Table 3 UAR and UF1 performance of different approach under LOSO protocol on different datasets.
From: Micro-expression recognition model based on TV-L1 optical flow method and improved ShuffleNet
Approach | MMEW | CASME II | SMIC | SAMM | ||||
---|---|---|---|---|---|---|---|---|
UAR | UF1 | UAR | UF1 | UAR | UF1 | UAR | UF1 | |
LBP-TOP10 | 0.5628 | 0.5794 | 0.7429 | 0.7026 | 0.5280 | 0.2000 | 0.4102 | 0.3954 |
LBP-SIP13 | 0.5208 | 0.5174 | 0.5281 | 0.5369 | 0.5142 | 0.4452 | 0.4169 | 0.4412 |
Bi-WOOF17 | – | – | 0.5382 | 0.7805 | – | 0.5727 | – | 0.5211 |
HOOF18 | 0.5814 | 0.5982 | 0.5782 | 0.5874 | 0.5696 | 0.5574 | 0.5877 | 0.5639 |
CapsuleNet43 | 0.7296 | 0.7115 | 0.7018 | 0.7068 | 0.5877 | 0.5820 | 0.5927 | 0.6520 |
CNN-LSTM22 | – | – | 0.4125 | 0.4113 | 0.4276 | 0.4150 | 0.3086 | 0.3020 |
NMER44 | 0.3414 | 0.4253 | 0.6929 | 0.7624 | 0.5555 | 0.5607 | 04,894 | 0.6389 |
RCN-Best32 | – | – | 0.6600 | 0.6584 | 0.8131 | 0.8653 | 0.6771 | 0.7647 |
TSCNN21 | – | – | 0.6009 | 0.6124 | 0.5924 | 0.5839 | 0.6103 | 0.6083 |
MobileNetV242 | – | – | 0.6328 | 0.6125 | 0.6368 | 0.6589 | 0.6236 | 0.6614 |
DeiT39 | 0.6921 | 0.6882 | 0.6814 | 0.6994 | 0.6881 | 0.6970 | 0.7052 | 0.7028 |
Proposed method | 0.6981 | 0.7318 | 0.6997 | 0.7251 | 0.7356 | 0.7141 | 0.6781 | 0.7428 |