Table 2 Performance of machine learning models for detecting refractory central serous chorioretinopathy cases in the external validation (Gangnam Severance Hospital dataset).
AUC (95% CI) | Accuracy (%) (95% CI) | Sensitivity (%) (95% CI) | Specificity (%) (95% CI) | P value* | |
---|---|---|---|---|---|
(A) FP-ResNet50 model | 0.813 (0.570‒0.952) | 68.4 (43.5‒87.4) | 100.0 (29.2‒100.0) | 62.5 (35.4‒84.8) | 0.196 |
(B) Clinical data-XGBoost model | 0.854 (0.619‒0.972) | 79.0 (54.4‒94.0) | 100.0 (29.2‒100.0) | 75.0 (47.6‒92.7) | 0.568 |
(A + B) Combined model (DeepPDT-Net) | 0.917 (0.697‒0.993) | 84.2 (60.4‒96.6) | 100.0 (29.2‒100.0) | 81.3 (54.4‒96.0) | Ref. |