Table 2 Demographics of patients in different subset.

From: Improving performance of deep learning models using 3.5D U-Net via majority voting for tooth segmentation on cone beam computed tomography

Subset

1

2

3

4

P value

Clinical diagnosis

Patient number

6

6

6

6

 

Gender (M: F)

3: 3

5: 1

5: 1

2: 4

 

Age (years)

25.3 ± 10.6

41.3 ± 22.9

30.1 ± 6.5

19.8 ± 4.2

0.566

Caries

1

1

0

1

 

Impacted tooth

5

3

4

6

 

Periodontitis

1

2

3

0

 

Acute apical periodontitis

1

0

0

0

 

Implant design

2

2

2

1

 

Residual root

0

0

1

0