Table 3 Comparison of segmentation of human teeth on CBCT using CNN.

From: Improving performance of deep learning models using 3.5D U-Net via majority voting for tooth segmentation on cone beam computed tomography

Author

Year

Patients/images

CNN architecture

Training strategy

Evaluation strategy

DSC

Ac

Sn

SP

PPV

NPV

Xu37

2019

1200/NA

DNN

3D volume

VB

NA

0.991

NA

NA

NA

NA

Tian36

2019

600/NA

U-Net + HN

3D volume

VB

NA

0.898

NA

NA

NA

NA

Cui33

2019

20/NA

ToothNet

3D volume

VB

0.921

NA

NA

NA

NA

NA

Li21

2020

24/1160

AttU-Net + BDC-lstm

2D slices

VB

0.9526

NA

NA

NA

NA

NA

Lee34

2020

102/NA

UDS-Net

2D slices

NA

0.918

NA

0.932

NA

0.904

NA

Chen29

2020

25/NA

FCN + MWT

3D volume

NA

0.936

NA

NA

NA

NA

NA

Rao35

2020

NA/86

SFCRN + DCRF

2D slices

NA

0.917

NA

NA

NA

NA

NA

Wu32

2020

20/NA

GH + BADice + DASPP U-Net

3D volume

VB

0.962

NA

NA

NA

NA

NA

Wang27

2021

28/9507

MS-D

NA

VB

0.945

NA

NA

NA

NA

NA

Duan20

2021

30/NA

U-Net

2D slices

VB

0.957

NA

NA

NA

NA

NA

Shaheen23

2021

186/NA

3D U-Net

3D volume

VB

0.90

NA

0.83

NA

0.98

NA

Lahoud31

2021

314/2924

FPN

2D slices

VB

0.934

NA

NA

NA

NA

NA

Fontenele30

2022

175/

3D U-Net

3D volume

VB

0.95–0.97

0.994–0.997

0.91–0.94

NA

1

NA

Our study

2022

24/12,552

2Da U-Net

2D slices

SB

0.839a

0.999

0.925

0.999

0.852a

0.999

3D U-Net

3D volume

SB

0.779a

0.997

0.864

0.999

0.810a

0.998

3.5Dv5 U-Net

2D slices, 3D volume

SB

0.911

0.999

0.888

1

0.970

0.999

  1. Numerical data are presented as mean value.
  2. BADice boundary aware dice loss, BDC-LSTM bidirectional convolution long short-term memory, DASPP densely connected Atrous spatial pyramid pooling, DCRF dense conditional random field, FCN fully convolutional network, FPN feature pyramid network, GH Gaussian heatmap localization, HN hierarchical network, LO label optimization, MS-D mixed-scale dense, MWT marker-controlled watershed transform, NA not available, PB volume-based, SB slice-based, SFCRN symmetric fully convolutional residual network, UDS-Net U-Net added by dense block and spatial dropout.
  3. aData acquired after erosion and dilation of mathematical morphology.