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Metabolomics‑based study 
of potential biomarkers of sepsis
Yang Li 1,2, Chenglin Wang 1,2 & Muhu Chen 1*

The purpose of our study was to explore potential characteristic biomarkers in patients with sepsis. 
Peripheral blood specimens from sepsis patients and normal human volunteers were processed 
by liquid chromatography-mass spectrometry-based analysis. Outlier data were excluded by 
principal component analysis and orthogonal partial least squares-discriminant analysis using the 
metabolomics R software package metaX and MetaboAnalyst 5.0 (https://​www.​metab​oanal​yst.​ca/​
home.​xhtml) online analysis software, and differential metabolite counts were identified by using 
volcano and heatmaps. The obtained differential metabolites were combined with KEGG (Kyoto 
Gene and Kyoto Encyclopedia) analysis to screen out potential core differential metabolites, and ROC 
curves were drawn to analyze the changes in serum metabolites in sepsis patients and to explore the 
potential value of the metabolites in the diagnosis of sepsis patients. By metabolomic analysis, nine 
differential metabolites were screened for their significance in guiding the diagnosis and differential 
diagnosis of sepsis namely: 3-phenyl lactic acid, N-phenylacetylglutamine, phenylethylamine, 
traumatin, xanthine, methyl jasmonate, indole, l-tryptophan and 1107116. In this study, nine 
metabolites were finally screened based on metabolomic analysis and used as potential characteristic 
biomarkers for the diagnosis of sepsis.

Sepsis should be defined as life-threatening organ dysfunction caused by a dysregulated host response to 
infection1. In 2017, an estimated 489,000 (95% uncertainty interval [UI] 38.9–62.9) sepsis cases and 110,000 
(10-1-12-0) sepsis-associated deaths were reported worldwide, accounting for 19.7% (18.2–21.4) of all deaths 
worldwide. From 1990 to 2017, age-standardized sepsis incidence decreased 37% (95% UI 11.8–54.5), and mor-
tality decreased 52.8% (47.7–57.5). Morbidity and mortality from sepsis vary across regions, with the highest 
burden in sub-Saharan Africa, Oceania, South Asia, East Asia and Southeast Asia2. The proportion of hospital-
acquired sepsis was 23.6% (95% CI 17–31.8%, range 16–36.4%) of all hospitalized sepsis cases. In the ICU, 24.4% 
(95% CI 16.7–34.2%, range 10.3–42.5%) of sepsis with organ dysfunction cases were acquired during the ICU 
stay and 48.7% (95% CI 38.3–59.3%, range 18.7–69.4%) originated in the hospital. The mortality rate of septic 
ICU patients with HA with organ dysfunction was 52.3% (95% CI 43.4–61.1%, range 30.1–64.6%)3. Due to the 
multiple presentations of sepsis, clinicians continue to face serious challenges in the diagnosis, treatment, and 
management of patients with sepsis4. Biomarkers play an important role in the early diagnosis and risk strati-
fication of sepsis, guiding the use of antibiotics, severity and prognosis, and the assessment of efficacy5. More 
than 170 groups of biomarkers have been identified for the assessment of sepsis, including indicators such as 
PCT, CRP, TNF-α/IL-6, MCP-1, and miRNA6–8, however, different biomarkers play different roles in the patho-
physiology of sepsis, and the misuse of certain biomarkers will lead to overdiagnosis and overuse of drugs such 
as antibiotics9–11. For example, due to the low sensitivity of blood cultures of pathogenic microorganisms, an 
increasing number of molecular biodiagnostic fields rely on the detection of bacterial DNA in blood to identify 
sepsis12,13. This new technique may lead to overdiagnosis of sepsis by misidentifying transient bacteremia with-
out clinical significance and biological features14. There is an urgent need for a new biomarker that will help to 
diagnose and treat sepsis patients at an early stage.

Metabolomics is a research method to quantify all metabolites in biological systems and to find the relation-
ship between metabolites and physiopathological changes, mainly involving differential changes in the anabolism 
and consumption metabolism of the organism15. By assessing the full range of endogenous metabolites and 
obtaining chemical fingerprints left by cellular processes as "instant" readings of gene function, enzyme activity 
and physiological status in the organism, overall metabolite measurements can reflect disease-related cellular 
biochemical activities16–18. Metabolomics provides a more accurate picture of the current metabolic state of the 
organism than conventional biomarkers, allowing us to stratify patients by phenomena and genotyping, rather 
than just by conventional parameters19. With the advancement of metabolomic analysis techniques, studies based 
on metabolomic student biomarkers are rapidly evolving, and statistical analysis methods to assess metabolomics 
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have moved from traditional univariate to more complex multivariate20. Depending on the target and purpose of 
the study, metabolomics is distinguished between targeted and untargeted metabolomics. Targeted metabolomics 
is the analysis of a single or a few specific metabolites, while untargeted metabolomics is the comprehensive 
analysis of all metabolites. Common detection methods in metabolomics include nuclear magnetic resonance 
(NMR), gas chromatography-mass spectrometry (GC/MS) and liquid chromatography-mass spectrometry (LC/
MS) techniques.LC–MS combined with GC–MS for comprehensive and comparative analysis of metabolites 
enables a more comprehensive assessment of metabolites extracted from samples and is widely used because of 
its high sensitivity, high specificity and reproducibility21,22.

The aim of this study was to elucidate the differential metabolic profiles between the sepsis group and normal 
controls using untargeted metabolomic analysis by liquid chromatography tandem mass spectrometry (LC–MS/
MS) and then to identify potential metabolites used to differentiate between normal subjects and septic patients.

Materials and methods
Patient recruitment and clinical data collection.  Peripheral blood specimens from sepsis patients 
(n = 22) and normal human volunteers (n = 10) in the Emergency Intensive Care Unit (EICU) of the Affiliated 
Hospital of Southwest Medical University from January 2019 to December 2019 were collected in this study 
under the support of a provincial-level project [Sichuan Provincial Department of Science and Technology pro-
ject ("Construction of sepsis metabolome platform and screening of biomarkers", subject label number 2020JP)] 
in the early stage.Inclusion criteria were as follows: 1. Meeting the diagnostic criteria for sepsis 3.0 proposed by 
the American Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medicine 
(ESICM) in 2016; 2. Aged between 16 and 75 years; 3.the subject or his or her legal representative agreed to par-
ticipate in the study and signed an informed consent form. Exclusion criteria were as follows: 1. Patients younger 
than 16 years of age; 2. Those with a previous history of organ failure (i.e., heart failure, respiratory failure, liver 
failure, kidney failure, etc.); 3. Those with previous immune system disorders; 4. Those with previous hemato-
logic disorders; and 5. Those who did not wish to participate in the study.

Sample collection.  In our study, 10 normal human peripheral blood specimens and 22 septic patients 
peripheral blood specimens of 5 ml each were collected and stored in the biospecimen bank of the Affiliated 
Hospital of Southwest Medical University at − 80 °C.

Ethical statement.  Our study was approved by the Ethics Committee of the Affiliated Hospital of Southwest 
Medical University (Approval Number: KY2018029). All patients and volunteers participating in the study 
informed themselves or their legal representatives and obtained written informed consent, and we confirm 
that all studies involving human research participants during the course of the experiment were conducted in 
accordance with the Declaration of Helsinki.

Access to raw data.  The datasets generated and analysed during the current study are available in the CNGB 
Sequence Archive (CNSA) of China National GeneBank DataBase (CNGBdb) with accession number 
CNP0002611 repository (https://​db.​cngb.​org/).

Untargeted metabolomics.  In this project, liquid chromatography coupled with mass spectrometry 
(LC–MS/MS technique) was used for untargeted metabolomics analysis, and a high-resolution mass spectrom-
eter Q Exactive HF (Thermo Fisher Scientific, USA) was used to improve metabolite coverage by acquiring data 
in both positive and negative ion modes separately. LC–MS/MS data processing was performed using com-
pound Discoverer 3.1 (Thermo Fisher Scientific, USA) software, mainly for peak extraction, peak alignment 
and compound identification. The metabolomics R software package metaX23, MetaboAnalyst 5.0 (https://​www.​
metab​oanal​yst.​ca/​home.​xhtml) online analysis software and the Metabolome Information Analysis process were 
used for data preprocessing, statistical analysis and metabolite taxonomic annotation and functional annota-
tion. Principal Component Analysis (PCA) was used to downscale the original multivariate data to analyze the 
groupings, trends (similarities and differences within and between sample groups), and outliers (presence of 
outlier samples) of the observed variables in the data set. The VIP values of the first two principal components 
of the OPLS-DA (Orthogonal Partial Least Squares Method-Discriminant Analysis) model were combined with 
the multiplicity of variance change (Fold change) obtained from the univariate analysis and the t test (Student’s 
t test) results to screen for differential metabolites. The differentially metabolised compounds screened by the 
above methods will eventually be considered as potential characteristic biomarkers for the diagnosis of Sepsis.

Data quality control.  Data quality was assessed by the reproducibility of QC sample assays, which mainly 
included chromatogram overlap in positive and negative ion mode for all QC samples (Fig. 1a), principal com-
ponent analysis (PCA) (Fig. 1b), and compound counts (Table 1).

Table 1 The ratio in the figure indicates that the number of metabolites with CV less than or equal to 30% of 
the relative peak area in QC samples is the ratio of all detected metabolites.

Result
Classification of metabolites.  The obtained specimens were thawed slowly at 4 °C, extracts were added 
and centrifuged several times, and the supernatants were separated and detected by LC–MS/MS technology for 
metabolite separation and detection. The data were processed by Compound Discoverer 3.1 (Thermo Fisher 
Scientific, USA) (mainly including peak extraction, retention time correction within and between groups, com-
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bined ion merging, missing value filling, background peak labeling, and data quality control), and then the 
molecular weight, retention time, peak area, and identification results were combined with KEGG (Kyoto Gene 
and Kyoto Encyclopedia), BGI Library, Chemspider database, Lipidmaps database, and HMDB database for 
identification, taxonomic annotation, and pathway annotation of the obtained metabolites to obtain the clas-
sification of metabolites in negative ion mode (Fig. 2a) and the metabolic pathways they are involved in (Fig. 2b).

Screening for differential metabolites.  In the two groups of samples, after normalizing the data in both 
positive and negative ion modes, a total of 7459 metabolites were detected, which were validated by performing 
principal component analysis (PCA, Fig. 3a) on the metabolites while applying orthogonal partial least squares-
discriminant analysis (OPLS-DA, Fig. 3b), which was validated by OPLS-DA. The differences between the two 
groups of samples were quite significant, and the samples were basically in the 95% confidence interval (CI). 
We were also able to obtain the value of the variable impact importance factor (VIP) of the first component in 
OPLS-DA. This summarizes the contribution of each variable to the model, and we considered metabolites with 
VIP > 1 and p < 0.05 as metabolites with significant differences, where the VIP values of the first 50 metabolites 
are shown in Fig. 3c. We submitted the raw data to MetaboAnalyst online analysis software (https://​www.​metab​
oanal​yst.​ca/​faces/​home.​xhtml) and obtained a volcano plot (Fig. 4a) and a visual heat map of the top 25 dif-
ferential metabolites (Fig. 4b). According to the volcano plot, it can be concluded that the sepsis group had 370 
high metabolites and 386 low metabolites compared to the normal group. The differential metabolites obtained 
by the above analysis often have similar and complementary functions biological, or are positively or negatively 
regulated by the same metabolic pathway and show similar or opposite expression characteristics between the 
sepsis and normal groups, and we applied MetaboAnalyst 5.0 software to classify the above metabolites into the 
organic heterocyclic compound class, organic acid class, organic carbohydrates, organic hydroxides, nucleic 
acids, benzenes, sterol lipids, organohalogen compounds, isoprenoids, polyketides, and fatty acyl groups.

Metabolomics pathway analysis.  The metabolites were analyzed by MetaboAnalyst 5.0 online software 
for metabolic pathways, and the general overview of metabolic pathways is shown in Fig. 5, while potential 
differential metabolic pathways were screened by combining the KEGG database with effect values > 0.5 and 

Figure 1.   Data quality control. (a) Overlapping BPC (base peak ion flow diagram) plots of all QC samples. The 
different color peak curves in the figure represent different QC samples. All QC samples in the figure have good 
overlapping plots, and the retention time of each QC sample and its corresponding peak corresponding intensity 
fluctuations are small, which indicates that the detection instrument is operating well during the sample 
detection and analysis. (b) Principal component analysis plot. The horizontal coordinate is the first principal 
component PC1, the vertical coordinate is the second principal component PC2, and the ellipse is the 95% 
confidence interval; each circle point represents a sample, and different colors represent different groups (green 
is QC sample, red is normal group, and blue is sepsis group). All three groups have good differentiation, and the 
high overlap of QC samples indicates the more stable testing instrument.

Table 1.   Metabolite number statistics table.

Node Node Pos

Total ion number 7485 668

RSD <  = 30% ion number 6807 652

Ratio (%) 90.94 97.6
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P values < 0.05. A total of four differential metabolic pathways were screened, namely, caffeine metabolism, 
biosynthesis of phenylalanine, tyrosine and tryptophan. Linolenic acid metabolism and phenylalanine metabo-
lism (Supplementary Information). Combined with the previous volcano and heatmaps, the above four meta-
bolic pathways were screened again for differential metabolites, and a total of 12 differential compounds were 
screened, namely, 3-phenyl lactate, N-phenylacetylglutamine, phenylethylamine, traumatin, xanthine, methyl 
jasmonate, indole, levotryptophan, 1107116, traumatic acid, theobromine, and salicylic acid.

The diagnostic value of different metabolites in sepsis.  To determine the diagnostic efficiency of the 
above 12 potentially differential metabolites, we generated subject operating characteristic curves (ROC curves) 
and calculated the area under the curve (AUC) for each incorporated characteristic, according to the Swets judg-
ment criteria24. AUC < 0.5 indicates that the test has no diagnostic value, AUC of 0.8–0.9 indicates that the test 
has good accuracy, and AUC > 0.9 indicates that the diagnostic test has high accuracy. Finally, we obtained nine 
differential metabolites whose expression values were significantly different between sepsis and normal con-
trol species, namely, 3-phenyl lactate (AUC: 0.923), N-phenylacetylglutamine (AUC: 0.782), phenylethylamine 

Figure 2.   Classification of metabolites. (a) Metabolite classification chart. The rectangular bars of different 
colors in the figure represent different kinds of compounds, the X-axis represents the number of metabolite 
classifications, and the Y-axis represents the metabolite classification entries. (b) KEGG functional analysis 
chart. The rectangular columns of different colors in the figure represent the different types of metabolic 
pathways in which the metabolites are involved, with the X-axis representing the number of metabolites and the 
Y-axis representing the specific biological function in the metabolic pathway in which they are involved35,36.

Figure 3.   Differential metabolites screening. (a) PCA plot The horizontal coordinates are the first principal 
component PC1, the vertical coordinates are the second principal component PC2, and the ellipse is the 95% 
confidence interval. Each point represents a sample, and different groups are labeled with different colors (red 
for the normal group and blue for the sepsis group). There is good discrimination between the two groups in the 
figure. (b) Plot of the OPLC-DA analysis model The horizontal axis in the figure is the first principal component, 
and the vertical axis is the second principal component. The number in parentheses is the score of that principal 
component, which indicates the percentage of the overall variance explained by the corresponding principal 
component. There is a good discrimination between the two groups in the figure. (c) VIP value score graph The 
vertical coordinate in the graph indicates a metabolite, and the horizontal coordinate indicates the VIP value.
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(AUC: 0.825), traumatin (AUC: 0.941), xanthine (AUC: 0.900), methyl jasmonate (AUC: 0.823), indole (AUC: 
0.909), levotryptophan (AUC: 0.859), and 1107116 (AUC: 0.916), whose ROC curves are shown in Fig. 6.

Discussion
The main difficulty in the diagnosis and treatment of sepsis is that its pathogenesis is not completely clear. 
Previous studies on sepsis mainly focus on genomics and transcriptomics. Due to the lack of specific clinical 
indicators for the diagnosis of sepsis, the mortality rate of this disease is very high. It has been shown that when 
sepsis occurs, the body is in a hypermetabolic state, and the three major nutrients, sugar, protein and lipids, all 
undergo constitutive changes in the body25, and a single biomarker is not ideal for diagnosing and judging the 
prognosis of sepsis. In this study, 12 differential metabolites were screened by metabolomics analysis, and 9 differ-
ential metabolites with high diagnostic efficiency were finally obtained by ROC curve analysis of the differential 

Figure 4.   Differential metabolites screening. (a) Volcano plot The dots in the figure represent metabolites 
with VIP values greater than or equal to 1, the circles represent metabolites with VIP values less than 1, green 
represent downregulated metabolites, red represent up-regulated metabolites, and gray represent meaningless 
metabolites. (b) Heatmap Each column in the figure represents a sample, where group 1 is the sepsis group and 
group 2 is the normal control group; each row indicates a differential metabolite expression value; blue indicates 
downregulation and brown indicates upregulation. Made by MetaboAnalyst 5.0. (https://​www.​metab​oanal​yst.​
ca/​home.​xhtml) online analysis software.

Figure 5.   Pathway analysis. The horizontal coordinate indicates the pathway impact value, the vertical 
coordinate indicates the −log10(p) of the pathway, a dot in the figure represents a metabolic pathway, the size 
of the dot is proportional to its impact value, and the color of the dot represents the size of the pathway P value, 
where the color change from yellow to red represents the change in the P value from large to small.
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metabolites, including 3-phenyllactic acid, N-phenylacetylglutamine, phenylethylamine, tronin, xanthine, methyl 
jasmonate, indole, L-tryptophan, 1107116. Through in-depth study of these differential metabolites, we are also 
expected to screen out potential therapeutic targets and provide clues for targeted treatment of sepsis.

It has been shown that 3-phenyl lactate activates the NF-κB signaling pathway and triggers nuclear transloca-
tion of NF-κB causing downregulation of E6 and E7 protein levels, while increasing matrix metalloproteinase-9 
(MMP-9) expression through PKC signaling phosphorylation of IKK-β, ultimately promoting cell migration 
and invasion in cervical cancer26. The analysis of metabolic pathways in this study suggests that 3-phenyllactate 
is mainly involved in the metabolism of phenylalanine and is highly expressed in patients with sepsis. Acetylglu-
tamine, as a uremic solute, can contribute to cardiovascular disease in renal insufficiency27, and phenylacetylglu-
tamine is elevated in the plasma of patients with early diabetic nephropathy compared to patients with normal 
renal function, suggesting that uremic solutes and oxidative stress markers are compounds that indicate early 
renal function decline in diabetic patients28. Our study found that N-phenylacetylglutamine is mainly involved 

Figure 6.   ROC curve graph. The horizontal coordinates in the graph indicate the negative positive class rate, 
i.e. the false positive rate (1-specificity); the vertical coordinates indicate the true class rate, i.e. the true positive 
rate (sensitivity), and the AUC value, i.e., the area under the curve, the higher the AUC value, i.e., The larger the 
area under the curve is, the higher the prediction accuracy. The closer the curve is to the upper left corner (the 
smaller the X and the larger the Y), the higher the prediction accuracy.
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in the metabolism of phenylalanine in the human body, and it is highly expressed in the sepsis group. Recently, 
it has been suggested that phenylethylamine-induced hyperthermia (PIH) activates a series of events that may 
lead to rhabdomyolysis, coagulation disorders, and even death29. Through metabolomic pathway analysis, we 
found that phenylethylamine was highly expressed in sepsis patients through phenylalanine metabolic path-
way. Previous reports have shown that the activity of traumatic acid is similar to that of unsaturated fatty acids, 
with antioxidant and stimulatory effects on collagen biosynthesis30, and that methyl jasmonate has functions 
in the regulation of antioxidant defense, inflammatory biomarkers, neurotransmitter regulation, and neuronal 
regeneration31. Our study found that both wound acid and methyl jasmonate were low expressed in sepsis patients 
and both were involved in linolenic acid metabolism. Indole is known to be a bacterial metabolite of tryptophan, 
which has been proposed as a key metabolite in the regulation of inflammation, metabolism and behavior, and 
recently, it has been reported that indole reduces hepatic expression of inflammation-related genes, macrophage 
activation and markers of liver injury32. The latest experimental studies show that indole-3-propionic acid treat-
ment ameliorated the middle cerebral artery occlusion-induced alterations of the gut microbiome structure, 
specifically reshaping the microbial community composition in mice with middle cerebral artery occlusion to 
resemble that in the mice from the control group, with an increase in the abundance of probiotics and a decrease 
in the abundance of harmful bacteria. Indole-3-propionic acid repaired the integrity of the intestinal barrier 
and regulated the activities of regulatory T cells (Tregs) and Th17 cells in the gut-associated lymphoid tissue33. 
In our study, by analyzing the biosynthesis process of phenylalanine, tyrosine and tryptophan, it was found that 
indole was at a low expression level in patients with sepsis. Recent studies have shown that in vivo tryptophan 
triggers a cytoprotective gene expression program by inhibiting iron death through direct scavenging of free 
radicals and activation of an antioxidant gene expression program after the production of indole-3-pyruvate, 
thereby inhibiting redox death of iron death34. The present study found that the expression level of L-tryptophan 
was low in patients with sepsis.

In our study, metabolomics analysis combined with ROC curve analysis was used to screen the differential 
metabolites closely related to the clinical manifestations of sepsis, so as to provide clues for targeted therapy of 
sepsis. However, the deficiency of the study is more apparent, we failed to sepsis patients thoroughly clarifying 
the process of metabolism, metabolic pathways of disease condition and signaling pathways are still not entirely 
clear, how the differences metabolites of selected above mediated the body inflammation reaction and the disease 
of which represent meaning still need further in-depth study.
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