Table 3 Threshold specific performance metrics for predicting exacerbation within 2 days (validation cohort).

From: Machine learning did not beat logistic regression in time series prediction for severe asthma exacerbations

Probability threshold

Model

Sensitivity

Specificity

PPV

NPV

0.001

XGBoost

0.71 (133/188)

0.81 (32,178/39,904)

0.02 (133/7859)

1.0 (32,178/32,233)

Logistic regression

0.93 (174/188)

0.56 (22,227/39,904)

0.01 (174/17,851)

1.0 (22,227/22,241)

0.002

XGBoost

0.59 (110/188)

0.89 (35,326/39,904)

0.02 (110/4688)

1.0 (35,326/35,404)

Logistic regression

0.84 (158/188)

0.82 (32,720/39,904)

0.02 (158/7342)

1.0 (32,720/32,750)

Resulting in 5217 positive predictionsb

One class SVM

0.34 (64/188)

0.87 (34,751/39,904)

0.01 (64/5217)

1.0 (34,751/34,875)

XGBoost

0.6 (112/188)

0.87 (34,800/39,904)

0.02 (112/5216)

1.0 (34,800/34,876)

Logistic regression

0.73 (137/188)

0.87 (34,823/39,904)

0.03 (137/5218)

1.0 (34,823/34,874)

Resulting in 138 positive predictionsb

Clinical rulea

0.05 (10/188)

1.0 (39,776/39,904)

0.07 (10/138)

1.0 (39,776/39,954)

XGBoost

0.11 (21/188)

1.0 (39,787/39,904)

0.15 (21/138)

1.0 (39,787/39,954)

Logistic regression

0.11 (20/188)

1.0 (39,787/39,904)

0.15 (20/137)

1.0 (39,787/39,955)

  1. SVM support vector machine, XGBoost gradient boosted decision trees, ppv positive predictive value, NPV negative predictive value.
  2. aPeak Expiratory Flow < 60% personal best.
  3. bThis threshold is set so that the XGBoost and logistic regression models produce the same number of positive predictions as the one class SVM or clinical rule.