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Shaping the spin wave spectra 
of planar 1D magnonic crystals 
by the geometrical constraints
Justyna Rychły‑Gruszecka 1,2, Jakob Walowski 3, Christian Denker 3, Tobias Tubandt 3, 
Markus Münzenberg 3 & Jarosław W. Kłos 2*

We present experimental and numerical studies demonstrating the influence of geometrical 
parameters on the fundamental spin-wave mode in planar 1D magnonic crystals. The investigated 
magnonic crystals consist of flat stripes separated by air gaps. The adjustment of geometrical 
parameters allows tailoring of the spin-wave frequencies. The width of stripes and the width of gaps 
between them affect spin-wave frequencies in two ways. First, directly by geometrical constraints 
confining the spin waves inside the stripes. Second, indirectly by spin-wave pinning, freeing the spin 
waves to a different extent on the edges of stripes. Experimentally, the fundamental spin-wave mode 
frequencies are measured using an all-optical pump-probe time-resolved magneto-optical Kerr-effect 
setup. Our studies address the problem of spin-wave confinement and spin-wave dipolar pinning in 
an array of coupled stripes. We show that the frequency of fundamental mode can be tuned to a large 
extent by adjusting the width of the stripes and the width of gaps between them.

Ferromagnetic stripes are one of the basic building blocks of magnonic structures1–4. They can act as waveguides 
carrying the information encoded in spin waves5,6. Recently, many publications have focused on the spin waves 
in the sets of stripes, arranged in-plane periodically (in magnonic crystals7–10) or quasiperiodically (in magnonic 
quasicrystals11–15). The stripe systems act not only as waveguides. By adjusting their dimensions, we can tailor 
the spin wave propagation and thus process magnonic signals16,17.

The collective magnetization dynamics in stripe arrays depend on the magnetic coupling between the stripes. 
Thus, the simplest possible structure of this type is a periodic sequence of flat stripes separated by air gaps, which 
can be carved in thin ferromagnetic films. In such a system, the coupling is provided by a dynamic stray field 
within the gaps. The strongest dynamic stray field is created by the fundamental mode, where the magnetization 
precesses in phase. The largest surface magnetic charges and, thus, the strongest dynamic stray field appears on 
the lateral faces between the stripes, which is also reflected in the ellipticity of precession18. However, this effect 
is partially mitigated by the reduction of precession amplitude close to the lateral faces for flat stripes, which 
is called dynamical pining of magnetization19,20. In other words, the system partially trades the demagnetizing 
energy related to the presence of surface charges on lateral faces (and related to the presence of dynamic stray 
field) for other contributions of demagnetizing energy, resulting from the volume magnetic charges induced by 
the non-homogeneous distribution of the spin-wave amplitude21. The pinning partially confines the fundamental 
mode within the stripes and causes a frequency up-shift when the stripe’s widths are narrowed. Another effect 
is the weakening of dipolar coupling between the stripes due to dynamic magnetization pinning because of the 
reduction of dynamic stray field.

The strength of the pinning is expressed by the pinning parameter20: ∂nm(r)/m(r)|r=r0 – the ratio of the 
directional derivative of dynamic magnetization ∂nm(r) (in the direction normal to the edges n ) to the magneti-
zation amplitude itself m(r) , taken on the edge of the stripe r = r0 . The pinning parameter varies from 0 to ∞ , 
corresponding to the completely free ( ∂nm(r) = 0 ) and pinned magnetization ( m(r)|r=r0 = 0).

In the absence of the dipolar interaction, the spin wave is free on the surfaces ( ∂nm(r) = 0)22. Then, the 
pinning can be introduced by a different mechanism: the presence of surface magneto-crystalline anisotropy22. 
In the general case, the dipolar pinning can be combined with the influence of surface anisotropy20. However, 
for thin stripes (where the thickness and width are tens and hundreds of nanometers, respectively), the dipolar 
interactions significantly impact pinning20.
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When the dipolar interactions prevail over the exchange interactions, spin wave modes in confined geometry 
(e.g., in stripes) can be calculated by solving the integral eigenvalue problem with the magnetostatic Green’s 
function as an integral kernel20,23–25. This approach can be applied to flat stripes19 or arrays of flat stripes26. The 
underlying theoretical model26 was successfully confirmed by experimental studies where the spin-wave spectra 
in stripe arrays were measured using Brillouin Light spectrometry27–29. It is worth noting that the spin-wave 
dynamics in a sequence of flat stripes can also be successfully described in the lattice (Hamiltonian-based) models 
with dipolar and exchange interactions taken into account30,31.

Here, we investigate experimentally and theoretically the effect of dipolar interaction between magnetic 
nanoelements (stripes) on spin wave pinning and consequently on the frequency of the fundamental mode in 
such structures. Spin wave dynamics is calculated numerically by solving the linearized Landau-Lifshitz equa-
tions. We use an experimental technique complementary to Brillouin Light Spectrometry29,32,33, the time-resolved 
magneto-optical Kerr effect (TR-MOKE) spectroscopy34–37, to determine the fundamental mode frequency. Using 
the TR-MOKE technique, we measure the frequency of the fundamental spin-wave mode (precisely at the wave 
vector k = 0 ), for which the dynamic dipolar field between nanoelements in planar structures is the strongest. 
We investigate the continuous transition from a periodic sequence of isolated stripes (separated by large air gaps) 
to a continuous layer (where the gaps vanish) to study the relation between the dipolar coupling in an array of 
stripes and the spin wave pinning on the edges of stripes.

The paper is organized in the following way. In “Results and discussion”, we present and describe the results of 
our measurements and computations. We show the dependence of frequency and mode profile of fundamental 
mode (i.e., the mode which precesses uniformly in-phase in the whole volume of the system) on the structure’s 
geometry—stripes width and size of the air gap. “Results and discussion” is finalized with the conclusions. The fol-
lowing section (“Methods”) describes the experimental methods (fabrication of the samples, TR-MOKE method), 
numerical techniques (finite element method (FEM)38), and theoretical approach (semi-analytical method based 
on magnetostatic Green’s function technique23) we used. We also provide the Supplementary Information, which 
describes: the details of post-processing for the TR-MOKE signal, the semi-analytical calculations of the demag-
netizing factors for fundamental mode, and the determination of equilibrium orientation of static magnetization.

Results and discussion
The systems consist of CoFeB stripes of finite width w and thickness d . The stripes are periodically aligned 
in-plane and separated by air gaps g—see Fig. 1a. We are interested in the planar system where the in-plane 
dimensions (widths of the stripes w ) are much larger than the thickness d : w ≫ d . For such geometry, we can 
only observe the spin wave pinning on the lateral faces of the stripes and relate the spin-wave confinement to the 
finite width of the stripes w and the interaction between the stripes (determined by the width of the air gaps g).

In our studies, we fixed the thickness d = 30 nm and varied the width w of the stripes (in the range: 500–1000 
nm) and the air gaps g between them (in the range: 125–1000 nm). The system is magnetized by a uniform 

Figure 1.   The geometry of the investigated system. (a) The periodically ordered CoFeB stripes have a cross-
section of thickness d and width w , and are separated by air gaps of width g . The vector H0 shows the applied 
magnetic field direction. (b) The EBL scan of the structure with w = 500 nm and g = 125 nm . (c) The electron-
beam lithography (EBL) scan of the structure with w = 500 nm and g = 1000 nm . The stripes are deposited on 
Si02 substrate. (d) The scheme of the all-optical pump-probe TR-MOKE setup.
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in-plane bias magnetic field of magnitude µ0H0 = 0.15 T tilted at an angle θ = 60◦ out of the normal to the plane 
( z-axis), in the direction of the stripes ( y-axis). In all calculations, we have assumed the saturation magnetization 
MS = 1342 kA/m and the exchange constant Aexch = 13.6 pJ/m. The gyromagnetic ratio is γ = −176 rad GHz/T. 
Those values come both from measured values of uniform CoFeB film, as well as from matching the frequency 
value for a homogeneous CoFeB layer in numerical calculations with the value obtained in measurements with 
TR-MOKE (the result for a uniform layer is presented in Supplementary information A). The same fundamental 
mode frequency could be obtained for a uniform layer using Kittel’s ferromagnetic resonance (FMR) frequency 
formula: f = γµ0

2π

√
(H0 sin θ)(H0 sin θ +MS) . The TR-MOKE experiment was performed as presented in Fig. 1d 

and described in “Methods-measurements”. The signal measured in time was then subjected to postprocessing 
(described in Supplementary information A), culminating in the calculation of the Fourier transform of the 
measured and processed signal. With this procedure, we are able to obtain the experimentally measured frequen-
cies for each of the fabricated structures.

The numerically calculated FMR frequency for the CoFeB layer is equal to 13.6 GHz. The FMR frequencies 
obtained experimentally by TR-MOKE are in the range of 13.6 up to 13.95 GHz. Differences may be due to the 
quality of the samples measured, the quality of the laser in the pump-probe experiment, and other factors. It 
follows that measurement uncertainties of half a gigahertz are expected, even for simple structures. The value 
calculated for uniform CoFeB film is marked in Fig. 2 by a dotted grey line.

After these preliminary studies, we performed (by TR-MOKE) the measurements of magnetization dynamics 
in all the fabricated periodic structures with stripes of the widths w = 500, 860, 1000 nm, separated by the air 
gaps with the widths g = 125, 150, 175, 200, 250, 300, 500, 625, 1000 nm. To demonstrate the impact of the width 
of the stripes on the interactions between the neighboring stripes in periodic structures, we have plotted the 
frequency of the fundamental mode in the dependence on the air gaps’ width g (dots in Fig. 2). These dependen-
cies were shown in separate sub-figures, for each considered width of the stripes w . To verify the measurement, 
we added the results of numerical simulations and semi-analytical calculations, which are presented by solid 
and dashed lines, respectively. The numerical studies were done in COMSOL Multiphysics and based on FEM 
simulations (see “Methods B”), whereas the formalism of tensorial magnetostatic Green functions was used for 
semi-analytical calculations (see Supplementary information B).

It can be seen that we have achieved good agreement between experimental, computational, and semi-
analytical results. Experimental results are subject to significant measurement error even for uniform CoFeB 
films due to the quality of the CoFeB material (homogeneity of composition), measurement uncertainty (such as 
laser settings, and measurement of structures in the right place), which we have already described for the layers. 
In the case of periodic structures, the experimental measurement results are subject to even more significant 
uncertainty due to the difficulty of producing ideal thin magnetic stripes with sharp edges, separated by air gaps 
of the same width along the length of the stripe. Taking this into account, the presented experimental results 
are within the measurement uncertainty limit. It can be seen that the fundamental mode frequencies depend 
on the air gap separations between stripes. The change of fundamental mode frequency between uniform film 

Figure 2.   The results show the fundamental mode frequency for individual structures, depending on the width 
of the air gap (separation) between magnetic stripes with the widths of (a) 500 nm, (b) 860 nm, and (c) 1000 
nm. In subplots (a), (b), and (c), the results of measurements with the TR-MOKE method are represented by 
points. These results are compared with the solid and dashed lines’ numerical and semi-analytical calculations. 
The dotted grey line shows the lower frequency limit corresponding to the fundamental mode frequency of 
the layer (the result of the calculation). The dotted (dash-dotted) lines show the frequency limits for individual 
stripes of given widths, which is the upper-frequency limit of the tested systems—sequences of stripes of a given 
stripe width—the result of numerical (semi-analytical) calculations.
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and periodic structures is continuous. For very small separations, the fundamental mode frequency of periodic 
structure tends to be the FMR frequency of a uniform film, being the bottom limit. The bigger the separations, 
the higher the frequency of the fundamental mode of the structure. The fundamental mode frequency is the 
highest for completely separated stripes—i.e., single stripes—which is the upper limit. In our measurements, 
it is impossible to measure a signal from a single stripe since the signal would be too small, so the upper limit 
was only calculated numerically (dash-dotted line) and semi-analytically (dotted line). The fundamental mode 
frequency of a single stripe is presented as a dotted (dash-dotted) line for each subfigure in Fig. 2 independently.

We can notice (in Fig. 2) that the measured frequencies (points) are mostly lowered compared to the cor-
responding numerical and semi-analytical results (solid and dashed lines). This is due to the fact that the fer-
romagnetic stripes obtained in the fabrication process are, in most cases, slightly wider than those planned in 
the design. In general, the smaller the structures, the lower the accuracy of their fabrication (the narrower the 
stripes, the higher the uncertainty associated with their fabrication, and the narrower the air gaps between the 
stripes, the worse they are reproduced up to the limit of the production possibilities of a given apparatus. The 
upper-frequency limit of the structures (obtained for single stripes) varies depending on the geometry of the 
stripe, in our case, its width. It is worth noting that the TR-MOKE signal is weaker for wide gaps due to the 
smaller amount of magnetic material than in other samples. This causes the accuracy of frequency determination 
for the fundamental mode to be limited. The reason is that due to the damping of precessing magnetization, a 
sufficiently long signal above the noise level cannot be recorded. The effect of stripe width on the fundamental 
mode frequency is easily read from Fig. 2 by comparing the dotted lines—the narrower the stripe, the higher 
the fundamental mode frequency.

For a better understanding and more explicit interpretation of the experimental results, we performed the 
simulations for the extended range of the widths of air gaps g, i.e., from g = 0.5 nm up to g = 10 µ m. This allows 
us to present the relation between the frequency of the fundamental mode and the width of the air gaps on the 
logarithmic scale in Fig. 3 and observe the transition between the continuous layer and the sequence of isolated 
stripes as the distance between the stripes increases—see the blue, green and orange curves for the widths of 
stripes: w = 500, 860, 1000 nm. We also presented additional results for single pair of stripes of 500 nm width 
each, separated by an air gap, for which the dependence of the fundamental mode frequency on the air gap is 
indicated in Fig. 3 by the red dashed line. For double w = 500 nm wide stripes, the upper limit for fundamental 
mode frequency is just the frequency for a single stripe of the width w = 500 nm—as is the case for a periodic 
structure composed of such stripes, whereas the lower limit for fundamental mode frequency is the fundamental 
mode frequency of a single stripe of the width w = 1000 nm. This is because of the merging of two w = 500 nm 
stripes into one stripe of double width, for g → 0 . Similarly, the lower limit of the fundamental mode frequency 
for a periodic stripe structure is the FMR frequency of a layer.

We have plotted the profiles of the fundamental mode for systems composed of stripes of one selected width 
( w = 500 nm) to illustrate the relation between the frequency of the fundamental mode and spin-wave pinning. 
The colors for the modes’ profiles denote the magnitude of the in-plane component of dynamic magnetization mx . 
The dark and light colors correspond to the small and large precession amplitude, respectively. We can observe 
that the amplitude distribution of all modes is homogeneous through the stripes’ thickness, while across the 
width are partially pinned at the edges of the stripes, depending on the separation from other stripes.

The profile marked with the label (s) is the profile of the mode of a single 500 nm wide stripe (or the stripe 
separated from the other stripes by a considerable distance: g → ∞ ). We can observe quite a strong pinning of 
magnetization dynamics at the edges of the stripe. The magnetization dynamics is more released at the stripe’s 
edges for the case of a g = 10 nm stripe gap, denoted by label (B). In the limit of an extremely narrow separation 
between the stripes ( g =0.5 nm, marked by (A)), it can be seen that the mode is practically homogeneous, and 
the magnetization is almost completely free at the edge of the magnetic stripe, almost entirely resembling the 
magnetization in the magnetic layer.

We performed the supplementary calculations for a single pair of stripes of the width w = 500 nm each. The 
limit (s), denoting the fully separated stripes (for g → ∞ ), is the same as the periodic structure, while the lower 
frequency limit (for g → 0 ) and the mode profile are the same as for a w = 1000 nm wide stripe. In the limit of 
very narrow separation between two stripes (0.5 nm, denoted by the label (a)), it can be seen that the spin-wave 
amplitude has a maximum value near the boundary between the two stripes, while at the external edges, the spin-
wave is dipole-pinned, as is the case for the separated stripe. In the case of an intermediate separation between 
the stripes ( g = 10 nm, labeled (b)), the spin wave is partially released at the interface between the stripes while 
maintaining identical pinning at the outer edges of the stripes.

The pinning of the spin waves means the partial confinement inside the stripes, which lifts the frequencies of 
the spin wave. This effect is much more substantial for narrower stripes19,21,27. The increase of the frequencies for 
the wave eigenmodes caused by confinement is a general wave phenomenon that also manifests in considered 
magnonic structures when the spin wave pinning comes into play.

We can summarize our research on the magnetization dynamics in the array of flat stripes arrays by high-
lighting the following conclusions. (i) The fundamental mode frequency increases with the stripes’ separation. 
It also depends on the width of the stripe due to the pinning. The frequency of the fundamental mode is lower 
for wider stripes. This decrease results not only from the extension of the space on which the mode is spanned 
(i.e., the width of the stripe) but also from the reduction of pinning (when the ratio of width to thickness is 
increasing—as it was also shown in Ref.19). It is worth noting that the wider stripes are more strongly coupled 
compared to the narrower stripes, at the same gaps, because the weaker pinning means the stronger stray field 
produced at the lateral faces of the steps, which is responsible for coupling. (ii) The dipolar interactions between 
the constituting nanoelements of magnonic planar nanostructure must be considered even if the distance between 
successive stripes is within a single micrometer. (iii) The TR-MOKE measurements allow for the investigation of 
the frequency of fundamental mode, i.e., the mode precessing uniformly in space (with wave vector k = 0 ), which 
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are inaccessible for BLS measurements. However, the resolution of TR-MOKE measurements in the frequency 
domain is weaker, and the determination of the spin waves frequencies is less accurate. (iv) The FEM computa-
tions can be used to investigate the spin-wave dynamics in the frequency domain in considered systems. However, 
the semi-analytical calculations (based on the formalism of magnetostatic Green functions) provide sufficiently 
accurate results, and the assumptions made in this method are not problematic for the systems studied here.

Methods
Fabrication.  The investigated CoFeB stripe patterns are fabricated in two steps. First, the 30 nm CoFeB 
film is deposited on a SiO2 substrate by magnetron sputtering from a Co40Fe40B20 target using Ar plasma at a 
base pressure in the order of ∼ 10−8 bar and the deposition rate set to 0.45 nm/s . A 2 nm Ru capping is subse-
quently deposited in situ by e-beam evaporation to prevent surface oxidation. Afterward, patterns are written 
using a scanning electron microscope (SEM) into a 500 nm thick photoresist layer. Following the developing 
process and Ar plasma etching into the ferromagnetic CoFeB layer, the resulting stripe patterns grouped in 
200µm × 200µm squares are created (for more information, see Supplementary Material). The final patterns 
have the following dimensions, stripe widths w = 500 nm , 860 nm , and 1000 nm , with air gaps between the 
stripes for each w ranging from g = 0 nm (continuous film) to g = 1000 nm , see Fig. 1b,c which shows sections 
of example structures. Both images are recorded with an SEM and show stripe sequences of the same widths w 
but for two different air gap widths g. The darker grey color corresponds to the magnetic stripes, while the lighter 
grey represents the air gaps.

Measurements.  Magnetization dynamics for precession frequency determination is measured in a time-
resolved magneto-optical Kerr-effect setup (TR-MOKE) in an all-optical pump-probe scheme, depicted in 
Fig. 1d. The measurements are performed using a Ti:Sapphire laser at a central wavelength set to 800 nm (Coher-
ent Mira Seed)39. The pulses are amplified by a regenerative amplifier (RegA 9040 by Coherent) at a repetition 

Figure 3.   The results show the fundamental mode frequency for individual periodic structures, depending 
on the width of the air gap (separation) between the magnetic stripes with the widths of 500 nm (blue line), 
860 nm (green line), and 1000 nm (orange line), calculated numerically using FEM. The dotted lines present 
fundamental mode frequencies of the limiting structures - uniform thin CoFeB film, which is the limiting case 
of the periodic structure of vanishing separation between stripes (grey dotted line), and limits of single stripes, 
which is the case when stripes are as far that they cannot feel each other any longer—separated dotted lines are 
presented for each individual width of stripe—w = 500 nm (blue dotted line), w = 860 nm (green dotted line), 
w = 1000 nm (orange dotted line). The red dashed line shows the FEM result for a structure consisting of only 
two stripes—the upper limit is a single 500 nm wide stripe, and the lower limit is a single 1000 nm wide stripe. 
Additionally, the spin wave mode profiles are presented for structures with w = 500 nm: (A) periodic structure 
with g = 0.5 nm; (B) periodic structure with g = 10 nm; (a) double stripes with g = 0.5 nm; (b) double stripes 
with g = 10 nm; (s) single stripe.
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rate of 250 kHz and compressed to 40 fs pulse duration. Before the experiment, a beam splitter divides the laser 
beam propagating from the laser system into two beams, an intense pump beam for excitation and a weak 
beam to probe the magnetization. The sample is mounted inside a magnetic field between two pole shoes of an 
electromagnet. The magnetic field is directed along the shape anisotropy axis but tilted by 60◦ out of the normal 
to surface plane, as the sketches in Fig. 1a,d indicate. In this geometry, at field strengths, µ0H0 = 150mT , the 
stripes magnetization is saturated and slightly ( 2◦–3◦ ) tilted out of the easy magnetization axis. For such a large 
difference between the equilibrium orientation of magnetization and the direction of the external field, the 
torque driving the magnetization precession (after partial demagnetization of the sample by pumping pulse) is 
significant40.

The dynamics is triggered via a broadband excitation by depositing energy from the pump beam laser pulses 
at fluences adjusted to 12.7mJ/cm2 focused down to 100µm in diameter at the sample surface. We probe the 
change in magnetization by the time-delayed probe beam on a timescale up to 1 ns and the temporal resolution 
set to 2 ps . All TR-MOKE measurements are performed using a double modulation technique. The MOKE signal 
is modulated by a photo-elastic modulator PEM at 50 kHz, and the signal is recorded via a photodiode by the 
first lock-in amplifier. The time-resolved change in magnetization is measured by modulating the pump beam 
using a mechanical chopper at 800 Hz, periodically interrupting the pump pulses, and thus recording the signal 
change from the first lock-in amplifier using a second lock-in amplifier.

Theoretical and numerical framework.  The magnetization dynamics in a magnetic system is described 
by the equation of motion of the magnetization, called the Landau–Lifshitz equation18:

where γ is the gyromagnetic ratio, µ0 is vacuum permeability, α is dimensionless damping coefficient, MS is satu-
ration magnetization. This differential equation describes the precessional motion of magnetization in a solid and 
is commonly used in micromagnetics to model the effects of a magnetic field on ferromagnetic materials. The first 
term in LLE (1) describes the precessional motion of magnetization around the direction of the effective magnetic 
field, and the second term enriches that precession with damping by dragging the magnetization vector towards 
the direction of the effective field41. Both the magnetization of the ferromagnet M and the effective magnetic field 
depend on time and space; the latter can comprise many terms: Heff(r, t) = H0(r)+Hex(r, t)+Hd(r, t) . Those 
terms are: static, uniform external magnetic field H0 , long-range dipolar (magnetostatic) field Hd , and short-
range isotropic exchange field Hex . The exchange field could be expressed in the linear approximation as in42:

where �ex =
√

2Aex(r)

µ0M
2
S (r)

 is the exchange length, and Aex(r) is the exchange stiffness constant.
Dipolar field Hd can be derived from the magnetostatic Maxwell equations (that is, in the absence of electric 

currents and by neglecting the temporal changes of the electric vector): 

 For the above conditions, it is possible to formulate the expression of the magnetostatic field such as:

where scalar potential ϕ is called magnetostatic potential.
To observe the TR-MOKE signal, we applied the external field H0 in the oblique direction (see Fig. 1a,d), with 

two components H0 cos θ and H0 sin θ oriented in the normal direction to the plane of stripes ( z−direction) and 
along the stripes ( y−direction), respectively. Due to the small value of the field H0 , compared to strong shape 
anisotropy (resulting from a large value of MS for CoFeB), the static magnetization is practically oriented along 
the stripes, with a very small (ca. 2.5◦ ) out-of-plane deviation (see Supplementary information B for a detailed 
explanation). The linearization procedure, that we used, neglects the out-of-plane component of an external 
field and splits the magnetization vector and magnetic field into static: MS ŷ , H0 sin θ ŷ and dynamic: (radio-
frequency) components m = [mx , 0,mz] , h = [hx , 0, hz] . We can neglect all nonlinear terms in the dynamical 
components. Since |m(r, t)| ≪ |Mz(y)| , we can also assume Mz(y) ≈ MS(y) , where MS(y) is the saturation mag-
netization dependent on the y-coordinate. We consider monochromatic SWs in a fundamental mode ( k = 0 ) 
that mainly contributes to the recorded signal. The time and space dependence of the dynamic component of the 
magnetization and the dipolar field is assumed to have the forms m(r, t) = m(x, z)eiωt , and h(r, t) = h(x, z)eiωt , 
where ω is the spin waves angular frequency ( ω = 2π f  where f is the frequency).

Lastly, coupling the Landau–Lifshitz equation with Gauss law for magnetism, we arrive at the following system 
of equations for the dynamic magnetization m and magnetostatic potential ϕ : 

(1)
∂M(r, t)

∂t
= −|γ |µ0

[

M(r, t)×Heff(r, t)+
α

MS
M(r, t)× (M(r, t)×Heff(r, t))

]

,

(2)Hex(r, t) = ∇ ·
(

�
2
ex(x)∇M(r, t)

)

,

(3a)∇ · (M+Hd) = 0,

(3b)∇ ×Hd = 0.

(4)Hd = −(∇ϕ),

(5a)∂x(mx − ∂xϕ)+ ∂z(mz − ∂zϕ) = 0,

(5b)
H0 sin θ

MS
mx −

iω

|γ |µ0MS
mz + ∂xϕ −∇ · ( �

2
ex

MS
∇mx) = 0,
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 For the eigenvalue problem (5), we neglected damping because the correction of the eigenfrequencies due to 
the damping is quadratic in α , which is extremely small for CoFeB, where α < 0.01.

The TR-MOKE measurements give the frequency of the fundamental mode. Therefore, we only search for 
the lowest frequency solution of the eigenproblem (5), which corresponds, in our system, to the mode being 
homogeneous in phase. To calculate the frequencies (eigenfrequencies) and SWs mode profiles (eigenmodes) 
in the considered periodic structures, we employed the frequency-domain finite element method solving the 
eigenproblem obtained from Eq. (5). We have used the COMSOL Multiphysics software38 to solve8 Eq. (5). This 
technique allows us to solve the problem directly in the frequency domain and avoid the postprocessing required 
for micromagnetic simulations which are performed in the time domain. At the edges of the computational 
domain (far from the ferromagnetic materials, i.e. above and below the planar structure, in z-direction), the 
Dirichlet boundary conditions, forcing the magnetostatic potential to vanish, are imposed. An elementary cell 
is created for the structures under investigation, which, in the case of periodic structures, has Bloch boundary 
conditions imposed at the edges. Here, we reduced the Bloch boundary conditions to periodic boundary condi-
tions by assuming that the wave vector: kx = 0 . This ensures the in-phase precession in the successive stripes, 
characteristic for the fundamental mode. The Dirichlet boundary conditions for single and double stripes are 
implemented at the far distance from a ferromagnetic material in the x-direction. For the resulting elementary 
cell, we fit a finite element mesh. We performed calculations in the mathematics module of COMSOL Mul-
tiphysics software, where we were able to enter the equations and boundary conditions of interest. Similarly as 
in our previous work21, the dipolar pinning of spin waves results from a dynamical demagnetizing field, which 
is included in our calculations; therefore, it does not have to be forced at the boundaries of a system.

Semi-analytical calculations supplemented the numerical results. The fundamental mode frequency 
was calculated using the Kittel formula for the planar system with the uniaxial shape anisotropy: Ny = 0 , 
Nz = 1− Nx ≫ Nx . We assumed that magnetization is aligned in-plane along the stripes. This assumption is 
valid when H0 ≪ MS (see Supplementary information A for explanations):

The demagnetizing factor Nz for fundamental mode was calculated by solving the integral eigenvalue problem for 
tensorial magnetostatic Green’s function (see Supplementary information B for details). For these semi-analytical 
calculations, we neglected the exchange interaction and assumed that the profile of the fundamental mode is 
uniform in the normal direction (i.e., z-direction) for the flat stripes ( w ≫ d).

Data availability
The datasets used and analyzed during the current study available from the corresponding author on reasonable 
request.
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