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Deep learning approaches 
to predict 10‑2 visual field 
from wide‑field swept‑source 
optical coherence tomography en 
face images in glaucoma
Sangwoo Moon 1,2, Jae Hyeok Lee 3, Hyunju Choi 3, Sun Yeop Lee 3 & Jiwoong Lee 1,2*

Close monitoring of central visual field (VF) defects with 10-2 VF helps prevent blindness in glaucoma. 
We aimed to develop a deep learning model to predict 10-2 VF from wide-field swept-source optical 
coherence tomography (SS-OCT) images. Macular ganglion cell/inner plexiform layer thickness maps 
with either wide-field en face images (en face model) or retinal nerve fiber layer thickness maps 
(RNFLT model) were extracted, combined, and preprocessed. Inception-ResNet-V2 was trained to 
predict 10-2 VF from combined images. Estimation performance was evaluated using mean absolute 
error (MAE) between actual and predicted threshold values, and the two models were compared with 
different input data. The training dataset comprised paired 10-2 VF and SS-OCT images of 3,025 eyes 
of 1,612 participants and the test dataset of 337 eyes of 186 participants. Global prediction errors 
(MAEpoint-wise) were 3.10 and 3.17 dB for the en face and RNFLT models, respectively. The en face 
model performed better than the RNFLT model in superonasal and inferonasal sectors (P = 0.011 and 
P = 0.030). Prediction errors were smaller in the inferior versus superior hemifields for both models. 
The deep learning model effectively predicted 10-2 VF from wide-field SS-OCT images and might help 
clinicians efficiently individualize the frequency of 10-2 VF in clinical practice.

Glaucoma is a chronic progressive disease characterized by the progressive loss of retinal ganglion cells and 
their axons associated with structural changes of the optic nerve head and macula, which result in functional 
impairment of the visual field (VF)1.

In particular, VF defects within the central 10° area have a substantial impact on vision-related quality of life 
including facial recognition, locating objects, motion detection, and reading street signs2,3. However, 16% of eyes 
with normal 24-2 VF are classified as abnormal on 10-2 VF4. Therefore, close monitoring of central VF defects 
with 10-2 VF testing is important to prevent vision loss in patients with glaucoma.

Recently, computer technology has been markedly improved, and massive parallel computing capabilities 
have made it possible to handle deep learning models5,6. Several studies have predicted 24-2 VF from spectral 
domain (SD) or swept-source (SS) optical coherence tomography (OCT) using deep learning models7–11. Cris-
topher et al.10 reported that a deep learning model based on a retinal nerve fiber layer (RNFL) en face image 
outperformed other deep learning models in identifying glaucomatous 24-2 VF defects. Shin et al.7 found that a 
deep learning model estimated 24-2 VF better from an image of wide-field SS-OCT than from that of SD-OCT. 
Only two studies have predicted 10-2 VF from SD-OCT measurements using a deep learning model12,13.

However, previous studies used macular thickness measurements to predict 10-2 VF with a deep learning 
model12,13. Since the wider area measured by SS-OCT contains more information than the area measured by 
SD-OCT, the sensitivity and specificity were excellent in glaucoma diagnosis by better reflecting the structural 
damage corresponding to functional loss7,14. In addition, the voxel intensity values of the en face image contained 
information that could not be obtained from the thickness map, which measures only thickness10.

The purpose of this study was to develop a deep learning model to predict 10-2 VF from wide-field SS-OCT 
images and evaluate its performance.
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Methods
Ethics.  This study was approved by the institutional review board (IRB) of Pusan National University Hospi-
tal, South Korea (approval no. 2203-024-113) and registered at Clinical Research Information Service (approval 
no. KCT0007192). The requirement for patient consent was waived by the IRB of Pusan National University 
Hospital because of the retrospective nature of the study. This study was conducted in accordance with the tenets 
of the Declaration of Helsinki.

Study design and population.  All training and test dataset were obtained from individuals visiting the 
glaucoma clinic at Pusan National University Hospital from September 2015 to April 2021. The training dataset 
comprised 3025 eyes of 1612 participants. A separate, non-overlapping test dataset was prepared with 337 eyes 
of 186 participants. The demographic characteristics of the training and test groups are summarized in Tables 1 
and 2.

For all participants, we retrospectively reviewed the detailed results of ophthalmic examinations, including 
diagnosis, age, sex, best corrected visual acuity (BCVA), intraocular pressure measurement with Goldmann 

Table 1.   Demographics and clinical characteristics of the training group. Values are presented as 
mean ± standard deviation (range) or number (%) unless otherwise indicated. logMAR  logarithm of the 
minimum angle of resolution; MD  mean deviation; PSD  pattern standard deviation; SS-OCT  swept-
source optical coherence tomography; mGC/IPLT  macular ganglion cell/inner plexiform layer thickness; 
cpRNFLT  circumpapillary retinal nerve fiber layer thickness.

Number of eyes (patients) 3025 (1612)

Age, years 57.28 ± 15.26

Sex, Female 840 (52.11)

Best corrected visual acuity (logMAR) 0.15 ± 0.19

Intraocular pressure at test, mmHg 16.24 ± 4.37

Spherical equivalent, diopter  − 1.78 ± 3.15

Axial length, mm 24.42 ± 1.68

Central corneal thickness, μm 543.00 ± 40.55

Lens status, Phakia 2392 (79.07)

Diabetes mellitus 234 (14.52)

Hypertension 452 (28.04)

Diagnosis

Normal 95

Glaucoma suspect 548

Ocular hypertension 169

Primary open-angle glaucoma 1640

Primary angle-closure glaucoma 216

Pseudoexfoliation glaucoma 164

Other secondary glaucoma 193

10-2 visual field

MD, dB  − 5.08 ± 6.35

PSD, dB 4.32 ± 4.55

SS-OCT

OCT image quality value 58.48 ± 5.86

mGC/IPLT, μm

Average 61.88 ± 9.12

Superotemporal 62.15 ± 10.37

Superior 62.40 ± 9.65

Superonasal 67.52 ± 10.08

Inferonasal 63.83 ± 10.22

Inferior 56.53 ± 9.64

Inferotemporal 58.82 ± 12.25

cpRNFLT, μm

Average 82.53 ± 21.13

Temporal 72.18 ± 18.72

Superior 99.16 ± 30.39

Nasal 63.38 ± 17.15

Inferior 95.37 ± 35.12
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applanation tonometry, keratometry with an Auto Kerato-Refractometer (ARK-510A; NIDEK, Hiroshi, Japan), 
central corneal thickness (Pachmate; DGH Technology, Exton, PA, USA), axial length (IOL Master, Carl Zeiss 
Meditec, Dublin, CA, USA), lens status, presence of diabetes mellitus, and presence of hypertension.

Glaucomatous optic neuropathy was defined if one or more of the following criteria were met: focal or dif-
fuse neuroretinal rim thinning, localized notching, cup-to-disc ratio asymmetry ≥ 0.2, and presence of RNFL 
defects congruent with VF defects15. Normal participants were defined as those with no history of ocular disease, 
intraocular pressure < 21 mmHg, absence of a glaucomatous optic disc appearance, and normal VF.

Participants with retinal disease, neurologic disease, or severe media opacity that could affect VF and OCT 
measurement, such as diabetic retinopathy, age-related macular degeneration, corneal opacity, cataract, or refrac-
tive error ≥  ± 6.0 diopters, were excluded.

SS‑OCT.  Wide-angle scanning using a deep range imaging (DRI) Triton SS-OCT device (Topcon, Tokyo, 
Japan) was performed on all participant within 6 months of 10-2 VF examination. Wide-field scanning involved 
the use of a wide-field 12- × 9-mm lens, with the scan centered on the fovea, for 256 B-scans, each comprising 
512 A-scans, for a total of 131,072 axial scans per volume. Scan time of 1.3 s per 12- × 9-mm2 scan was used5. 

Table 2.   Demographics and clinical characteristics of the test group. Values are presented as mean ± standard 
deviation (range) or number (%) unless otherwise indicated. logMAR  logarithm of the minimum angle of 
resolution; MD  mean deviation; PSD  pattern standard deviation; SS-OCT  swept-source optical coherence 
tomography; mGC/IPLT  macular ganglion cell/inner plexiform layer thickness; cpRNFLT  circumpapillary 
retinal nerve fiber layer thickness.

Number of eyes (patients) 337 (186)

Age, years 63.69 ± 12.89

Sex, Female 103 (55.38)

Best corrected visual acuity (logMAR) 0.15 ± 0.25

Intraocular pressure at test, mmHg 16.32 ± 3.82

Spherical equivalent, diopter  − 1.23 ± 2.57

Axial length, mm 24.22 ± 1.52

Central corneal thickness, μm 543.23 ± 39.15

Lens status, Phakia 245 (72.70)

Diabetes mellitus 29 (15.59)

Hypertension 64 (34.41)

Diagnosis

Normal 8

Glaucoma suspect 72

Ocular hypertension 15

Primary open-angle glaucoma 163

Primary angle-closure glaucoma 36

Pseudoexfoliation glaucoma 23

Other secondary glaucoma 20

10-2 visual field

MD, dB  − 4.95 ± 6.23

PSD, dB 4.05 ± 4.28

SS-OCT

OCT image quality value 57.19 ± 6.88

mGC/IPLT, μm

Average 62.20 ± 9.45

Superotemporal 62.59 ± 10.66

Superior 62.59 ± 9.78

Superonasal 67.52 ± 10.07

Inferonasal 63.54 ± 10.66

Inferior 56.89 ± 9.70

Inferotemporal 60.05 ± 12.34

cpRNFLT, μm

Average 83.31 ± 21.72

Temporal 71.61 ± 17.88

Superior 99.11 ± 29.67

Nasal 65.14 ± 18.74

Inferior 97.37 ± 36.27
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Poor-quality images (image quality scores < 40, poorly focused, or decentered during fovea scanning) or those 
acquired after segmentation failures or with artifacts owing to eye movements or blinking were excluded5.

10‑2 VF test.  Standard automated perimetry was performed on all participants using a Humphrey Visual 
Field Analyzer 750i instrument (Carl Zeiss Meditec) with the Swedish interactive threshold algorithm (SITA) 
standard 10-2. The 68 test points of the threshold value (THV) were used as the ground-truth VF of the training 
and test datasets. Reliable VF tests were defined as follows: false-positive rate < 20%, false-negative rate < 20%, 
and fixation loss < 33%16.

Flow of the deep learning model.  The deep learning model to predict 68 THVs of 10-2 VF from wide-
field SS-OCT images comprised a three-step process: (1) extraction of input images from a wide-field SS-OCT 
scan, (2) preprocessing of the extracted images, including enhancement of consistency and contrast, and concat-
enation of images, and (3) prediction of THVs using a deep learning model (Fig. 1).

Input image generation.  We developed an algorithm to extract images automatically using the Pillow 
module, an image processing library of Python, to be used as input data for the deep learning model. Our 
algorithm used three exported SS-OCT images: (1) macular ganglion cell/inner plexiform layer thickness map 
(mGC/IPLT map) 200 × 200 (width, height), (2) wide-field en face image 280 × 200, and (3) wide-field RNFL 
thickness (RNFLT) map 280 × 200. All left eye images were flipped horizontally to match the right eye format.

Preprocessing was performed so that the deep learning model could more efficiently predict 10-2 VF from 
the extracted images. Techniques to improve image consistency and contrast between images were implemented, 
and two different images were then concatenated. The final combined image had a resolution of 480 × 200 pixels 
(Supplementary Fig. S1).

Differences in image brightness and contrast could potentially affect deep learning model performance 
because the model performs prediction through a matrix calculation for each pixel of the image. To address 
this, a histogram-matching technique was performed to match the pixel probability distribution of the images 
representing brightness and contrast between images17.

On the mGC/IPLT map, wide-field RNFLT map (showing retinal thickness as a heat map), and wide-field en 
face image (expressing difference in brightness), the contrast of pixel values is an important factor to determine 
the degree of VF damage. Therefore, contrast limited adaptive histogram equalization (CLAHE) was used as 
enhancement17,18.

A wide-field en face or wide-field RNFLT image was combined with an mGC/IPLT image to form one input 
image. The combined image, sized 480 × 200, was fed into the input layer of the deep learning model.

Figure 1.   Flow diagram of the deep learning model (Google’s convolutional neural network architecture). 
Extraction of input images (wide-field en face image with mGC/IPLT map or wide-field RNFLT map with 
mGC/IPLT map) was performed on a wide-field scan of SS-OCT. Then, preprocessing of the extracted images 
was carried out, including consistency and contrast enhancement and concatenation of images. Inception-
ResNet-V2 was used as the backbone structure at the beginning of the architecture to extract the global features. 
The global average pooling layer flattened the output of the Inception-ResNet-V2 backbone and averaged 
1536 features. The three dense layers gradually condensed these features into 68 final output values, which 
corresponded to 68 10-2 visual field threshold values. mGC/IPLT  macular ganglion cell/inner plexiform layer 
thickness; RNFLT  retinal nerve fiber layer thickness; SS-OCT  swept-source optical coherence tomography.
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Deep learning model and training.  The deep neural network architecture predicting the 10-2 VF THV 
through preprocessed input data (horizontally concatenated image) is shown in Fig. 1. The open source deep 
learning library, Ubuntu Linux-based operating system (version 18.04.5 LTS) and Python (version 3.8.10, 
Python Software Foundation) was used.

A convolutional neural network architecture, Inception-ResNet-V2, was used as the backbone. Before train-
ing, the pretrained ImageNet weight of the Inception-ResNet-V2 was downloaded and applied. A bottleneck layer 
of the backbone was modified by one global average pooling layer followed by three consecutive fully connected 
layers (dense layers 1–3 in Fig. 1). The rectified linear unit (ReLu) was used as the activation function in all three 
dense layers. In this study, the parameters of both the backbone model and the fully connected layer were fine-
tuned. Since the images of ’ImageNet’ were used to set the initial value of weights in the pre-trained model and 
have different characteristics and purposes from the SS-OCT image, the weights of the convolutional layer were 
set to be trainable without freezing. Through a preliminary experiment, it was confirmed that the fine-tuning 
improved performance compared to the case of freezing.

The size of the output data for each layer is presented in Supplementary Fig. S2. As the input image passes 
through the backbone architecture (Inception-ResNet-V2), a shape of (13,4,1536) was created, and a one-dimen-
sional layer with the length of the number of channels in the last convolutional layer was formed through global 
average pooling. After that, the output was produced through 3 fully connected layers. Three dense layers gradu-
ally condensed these features into 68 final output values (THV)11.

The 3362 records from the entire dataset were randomly split into training, validation, and test groups in a 
8:1:1 ratio. Validation dataset were used to check the current fitness of the neural network during training to pre-
vent overfitting. For the training model, 300 epochs with a batch size of 16 were supplied to the neural network. 
For the loss function, mean squared error was used. When no further performance gain was observed over 300 
epochs, training was completed. The optimizer was ‘RMSProp’ and learning rate was set to 0.001. The learning 
rate decay was set to 0.9 every 20 epochs; this identified the optimal minimum point by lowering the learning 
rate as learning time increased. For training process monitoring, the loss and mean absolute error (MAE) values 
for each training and validation dataset were confirmed at every epoch.

The deep learning model extracted the output through 3 fully connected layers after the backbone model 
(Inception-ResNet-V2) and global average pooling (Fig. 1) (Supplementary Fig. S2)19. Weights were then cal-
culated through matrix multiplication of these 3 fully connected layers. Based on the weighted sum of the last 
convolutional layers of the backbone model, a heat map about one specific class image was generated19. With 
this Class Activation Mapping (CAM) technique, we confirmed which area of the input image the deep learning 
model focused on to predict each of the 68 THVs of the 10-2 VF.

Statistical analysis.  The Shapiro–Wilk test was performed to check data distribution normality. To com-
pare performance between the en face model (a wide-field en face image with mGC/IPLT map) and RNFLT 
model (a wide-field RNFLT map with mGC/IPLT map), we performed the paired t-test or Wilcoxon’s signed-
rank test depending on data normality. To compare prediction performance, MAE values of the THVs were used 
as accuracy metrics. On preliminary analysis, Inception-ResNet-V2 had a lower global prediction error (MAE) 
than Inception V3 (Fig. 2). Therefore, in this study, Inception-ResNet-V2 was used as the backbone model and 
trained to predict 10-2 VF from combined images.

Global analysis.  Absolute error (AE) between predicted and actual THV was calculated for the 68 test 
points, and the mean of the 68 AEs was calculated. Global MAE based on point-wise analysis (MAEpoint-wise) was 
calculated per eye using the following Eq. (1):

Sectoral analysis.  Sixty-eight test points were clustered into seven sectors using the cluster map proposed 
by de Moraes et al.20 (Fig. 3). To obtain the mean threshold sensitivities in each sector, threshold sensitivity in dB 
units at each of the 68 VF locations was first converted to a linear scale (1/Lambert) with the following formula:  
QUOTE . The values of all test points within each sector were averaged per eye. Then, the average VF sensitivity 
per sector was converted back to the dB scale for analysis. Sectoral analysis used the same deep learning model 
as global analysis, and training and evaluation were conducted as new models. In addition, global MAE based 
on sectoral analysis (MAEsector) was calculated per eye using the following Eq. (2):
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1
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Location‑wise analysis.  MAE was calculated per VF test point of all test dataset eyes according to input 
data for comparing prediction performance using the following Eq. (3):

THV = visual field threshold value

Figure 2.   Global mean absolute error (MAEpoint-wise) of 10-2 visual field prediction from Inception-ResNet-V2 
and Inception V3. The prediction errors of Inception-ResNet-V2 were significantly lower than those of 
Inception V3 regardless of input images. mGC/IPLT  macular ganglion cell/inner plexiform layer thickness; 
RNLFT  retinal nerve fiber layer thickness; InResNetV2  Inception-ResNet-V2.
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In all statistical analyses, SPSS (version 22.0 for Windows; SPSS, Chicago, IL, USA) was used, and a P value 
of < 0.05 indicated statistical significance.

Results
Global and sectoral VF estimation error between ground truth and estimation according to two different input 
images (wide-field en face image with mGC/IPLT map or wide-field RNFLT map with mGC/IPLT map) are sum-
marized in Table 3. Global MAEpoint-wise was 3.10 ± 2.40 dB (mean ± standard deviation) and 3.17 ± 2.37 dB for the 
en face and RNFLT model, respectively (P = 0.287). Global MAEsector was 2.64 ± 2.36 dB and 2.68 ± 2.29 dB for 
the en face and RNFLT model, respectively (P = 0.757). Globally, the estimation errors did not differ significantly 
between the two models. On sectoral analysis, the prediction error of the en face model was significantly lower 

(3)MAEn =

number of eyes
∑

i=1

∣

∣true THVi,n − predicted THVi,n

∣

∣

number of eyes

n = nth test point of visual field exam, i = ith eye

THVi,n = threshold value of ith eye, nth test point

Figure 3.   Cluster map of 10-2 visual field for sectoral analysis.

Table 3.   Global and the sectoral mean absolute error of 10-2 visual field prediction according to input images 
using Inception-Resnet-V2. Values are presented as mean ± standard deviation. Significance is marked in * (P 
value < 0.05). MAE  mean absolute error, RNFLT  retinal nerve fiber layer thickness.

En face model RNFLT model P value

Global MAEpoint-wise 3.10 ± 2.40 3.17 ± 2.37 0.287

Global MAEsector 2.64 ± 2.36 2.68 ± 2.29 0.757

Sector proposed by de Moraes et al.20

1 2.56 ± 2.87 2.51 ± 2.57 0.150

2 2.58 ± 3.04 2.42 ± 2.77 0.742

3 3.13 ± 3.91 2.96 ± 3.72 0.433

4 2.31 ± 2.81 2.44 ± 2.89 0.011*

5 1.96 ± 2.06 2.01 ± 1.97 0.358

6 2.12 ± 2.68 2.23 ± 2.61 0.135

7 2.07 ± 2.43 2.25 ± 2.61 0.030*
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than that of the RNFLT model in sectors 4 and 7 (P = 0.011 and P = 0.030, respectively). The lowest MAE sector 
was sector 5 (inferotemporal area) in both en face and RNFLT models.

According to location-wise analysis, the actual THVs were higher and prediction error lower in the inferior 
hemifield than in the superior hemifield for both models (Supplementary Fig. S3). Although the prediction 
errors did not differ significantly between the two models (all P-values ≥ 0.061, Wilcoxon’s signed-rank test), the 
en face model showed lower prediction errors at 44 test points in the superior VF that correspond to the more 
vulnerable zone proposed by Hood et al.21 (Supplementary Fig. S3d). Representative cases of 10-2 VF prediction 
are shown in Fig. 4. Although the deep learning models have never seen the actual 10-2 VF, the predicted 10-2 
VF looked very similar to the actual VF.

The representative case of CAM is represented in Fig. 5. In each CAM image, red indicates strongly activated 
points yielding high THVs and blue (or no color) indicates the opposite. In this example, VF loss was predomi-
nantly found in the superonasal area of the actual and predicted VF (Fig. 5a,b, respectively). The majority of VF 
test points in superonasal area have THVs of zero and are expressed as black squares in the actual and predicted 
VF. The inferior and some superotemporal regions are relatively intact (i.e., exhibiting high THV). The CAM 
images numbered 21–24 and 30–68 were intensely red (Fig. 5c) and generate high THVs (Fig. 5b). Note that these 
activated areas in the CAM images exactly match the corresponding green, blue, and gray regions (Fig. 5d). In 
contrast, the CAM images numbered 1–20 and 25–29 were not colored (and thus not activated) (Fig. 5c) and gen-
erate no to low THVs (Fig. 5b). These areas match the corresponding yellow, orange, and gray regions (Fig. 5d).

Correlation analysis was performed to determine the factors affecting 10-2 VF prediction (Supplementary 
Table S1). The prediction error (global MAEpoint-wise) was positively correlated with BCVA and negatively cor-
related with the spherical equivalent, 10-2 VF mean deviation (MD), OCT image quality, average mGC/IPLT, 
and circumpapillary RNFLT (cpRNFLT) in both models. As glaucoma progressed, estimation performance was 
worse in both models. Supplementary Figure S4 shows the relationship between prediction error and 10-2 VF 
MD using scatter plots.

Multiple linear regression analyses were performed to investigate the relative influence of possible factors 
affecting 10-2 VF prediction (Supplementary Table S2). The models were constructed using the enter method 
and with global MAEpoint-wise as the outcome variable. Age, BCVA, spherical equivalent, CCT, axial length, 10-2 
VF MD, OCT image quality, average mGC/IPLT, and cpRNFLT were used as independent variables. No mul-
ticollinearity was found between the variables (all variance inflation factors ≤ 5.414). The 10-2 VF MD was the 
most influential variable in the en face (β =  − 0.701, P < 0.001) and the RNFLT models (β =  − 0.588, P < 0.001); it 
was followed by the average mGC/IPLT (β =  − 0.210, P = 0.048) in the RNFLT model.

Discussion
Our results indicate that the deep learning model accurately predicted 10-2 VF from SS-OCT images. In point-
wise analysis, prediction errors in the inferior hemifield were smaller than those in the superior hemifield for 
both models. However, the en face model showed better estimation performance than the RNFLT model in the 
superior hemifield that corresponds to the more vulnerable zone of the macula. Moreover, on sectoral analysis, 
the en face model showed better estimation performance than the RNFLT model in sectors 4 and 7.

Several studies have recently estimated 24-2 VF from SD-OCT or SS-OCT images using deep learning 
models5,7,10,11. Only two studies have estimated 10-2 VF from SD-OCT thickness measurements using a deep 
learning model12,13. However, the prediction of 10-2 VF using OCT image was not performed in the previous 
studies5,7,10–13. Hashimoto et al.12 utilized a deep learning method to estimate 10-2 VF from SD-OCT thickness 
measurements. The deep learning model performed better than machine learning or multiple linear regression 
models, with a global prediction error (MAE) of 5.47 dB. In the second study, Hashimoto et al.13 used actual 
THVs of 24-2/30-2 VF to correct the predicted THVs of 10-2 VF with a deep learning model and the global 
prediction error (MAE) after correction decreased to 4.2 dB.

We observed lower prediction errors with our deep learning model than those reported for the models by 
Hashimoto et al.12,13. The global prediction errors (MAEpoint-wise) were 3.10 dB (en face model) in this study, and 
5.47 and 4.2 dB in theirs12,13. On sectoral analysis, all sectoral prediction errors were lower in our study than in a 
previous study12. On location-wise analysis, prediction errors were also lower at most of the 68 test points in the 
current versus previous studies12,13. Although our prediction errors within the superior hemifield, corresponding 
to the more vulnerable zone, were greater than those of inferior hemifield (the less vulnerable zone), they still 
remained lower than those of the preceding studies12,13.

There are several potential explanations of why the en face model of the present study achieved better results 
than the models of Hashimoto et al.12,13.

First, the scanning area of SS-OCT (12 × 9 mm including macula and optic disc) is wider than that of SD-OCT 
(9 × 9 mm centered on fovea). Shin et al.7 found that wide-field SS-OCT images were significantly more accurate 
than SD-OCT images at predicting a 24-2 VF. The authors suggested that wider scanning area of SS-OCT should 
contain much more information than the area of SD-OCT. Other studies have reported that the wide-field scan 
of SS-OCT collects the information needed to diagnose glaucoma with excellent sensitivity and specificity14,22,23. 
Therefore, a wide-field scan of SS-OCT images should better reflect the structural damage that corresponds to 
functional loss than the more narrow scan of SD-OCT.

In contrast to previous studies, which have used thickness measurements of the macular area alone12,13, we 
predicted 10-2 VF from SS-OCT images including both the macula and optic disc. Previous studies have found 
that mGC/IPLT correlated well not only with cpRNFLT but also the central VF, within 7.2° of the fovea24,25. 
Lee et al.26 have reported that 10-2 VF test points were mostly overlapped on a macular OCT scan (central 
4.8 × 4.0 mm) and correlated with each other. Jung et al.27 have also shown structure–function correspondence 
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Figure 4.   Representative cases of 10-2 visual field (VF) prediction. The actual threshold values (THVs) of 10-2 
VF tests are represented in the left column (a, b, c). The combined OCT images are represented in the middle 
column. The THVs predicted by the en face model (upper) and RNFLT model (lower) are represented in the 
right column. Darker color represents lower THV (left and right columns). mGC/IPLT  macular ganglion cell/
inner plexiform layer thickness; RNLFT  retinal nerve fiber layer thickness; MAE  mean absolute error.
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Figure 5.   Representative example of Class Activation Mapping (CAM) with the en face model. Sixty-eight class 
activation maps were placed at the individual 10-2 visual field (VF) test points (right eye). The figure shows the 
actual 10-2 VF threshold values (THVs) and the predicted THVs (a, b). Each CAM image is numbered at the 
top left (c). The red color indicates the region where the deep learning model was highly activated and generated 
a high sensitivity value for the 10-2 VF test point, whereas the blue color indicates the opposite (c). Structure–
function mapping between combined input images (including macula and optic nerve head scan; each in the left 
column) and 10-2 VF (right column) (d). The macula and optic nerve head sectors and the corresponding 10-2 
VF regions are indicated with similar color27. The numbers in the VF images are the same as those in the CAM 
images.
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maps between 10-2 VF test points and regions of the ONH or mGC/IPLT maps. Therefore, these two ONH and 
macular OCT scans may have complementary roles in predicting 10-2 VF.

We analyzed the performance the Inception-ResNet-V2 trained on mGC/IPLT map alone or en face image 
alone. And then we compared the performance of the models using single kind of image with that of the model 
using the combination of mGC/IPLT with en face image. We found that the model using the combination of 
mGC/IPLT with en face image significantly outperformed the model using either mGC/IPLT map alone or en 
face image alone. The global MAEpoint-wise of the models using mGC/IPLT map alone (3.62 ± 2.99 dB) and en face 
image alone (3.22 ± 2.51 dB) were significantly greater than that of the model using combination of mGC/IPLT 
map with en face image (3.10 ± 2.40 dB) (P < 0.001 and P = 0.041, respectively). The global MAEsector of the models 
using mGC/IPLT map alone (3.11 ± 2.86 dB) and en face image alone (2.79 ± 2.49 dB) were significantly greater 
than that of the model using combination of mGC/IPLT map with en face image (2.64 ± 2.36 dB) (P = 0.001 and 
P = 0.046, respectively).

Second, OCT images have additional information including RNFL reflectivity and the location of the major 
vessels associated with the RNFLT profile and bundle geometry that are not offered by thickness measurements 
alone28,29. Shin et al.30 observed that the diagnostic abilities of a deep learning classifier based on wide-field SS-
OCT images outperformed that of a conventional parameter-based method. Lazaridis et al.31 reported that the 
deep learning model based on OCT images along with RNFLT measurements showed lower 24-2 VF prediction 
errors than a model based on RNFLT measurements alone.

The en face model outperformed the RNFLT model in sectoral analysis. The en face image may detect local-
ized glaucomatous damage that could be missed or easily overlooked on the RNFLT map14,32. Christopher et al.10 
suggested that an en face image has additional information provided by voxel intensity values within the RNFL, 
not available through the thickness map alone. Unlike RNFLT measurements, which depend solely on thick-
ness, en face images may reflect abnormalities of both thickness and reflectance intensity32. A previous study 
demonstrated a saturation effect in the structure–function relationship of glaucoma due to residual glial cells 
and blood vessels that provide mGC/IPLT or RNFLT even after complete loss of visual function33. This remnant 
thickness may interfere with VF estimation from mGC/IPLT or RNFLT. In representative cases with VF defects 
(Fig. 4), despite some test points with complete loss of visual function (0 dB of THV), the RNFLT model showed 
various THVs. On the other hand, the en face model predicted THVs at those test points that were more similar 
to the actual values. In addition, automated segmentation errors have often been observed on the RNFLT map, 
and the proximal RNFL boundary with the ganglion cell layer is difficult to identify32. In comparison, the en face 
image was obtained by taking the average reflectance intensity of a 52-μm-thick slab below the internal limiting 
membrane, which was the easiest border for automated algorithms to identify reliably32,34.

Third, in this study, we used an image preprocessing process that allowed the deep learning model to more 
efficiently predict 10-2 VF. First, a histogram-matching technique was used to improve the issue of unbalanced 
pixel distribution between images. In the histogram-matching technique, given one representative pixel distribu-
tion, the algorithm identifies color mapping that optimally transforms another histogram into that one. Through 
this, all images are matched with one specific pixel distribution to achieve consistency17. Next, we used histogram 
equalization to evenly disperse the pixel distribution in a narrow spectrum over the entire range to enhance the 
contrast of the image. However, pixels are modified by a transform function based on the intensity distribution 
of the entire image. Thus, typical histogram equalization is suitable for enhancing the overall contrast but may 
cause issues in enhancing image details. To improve this, we used CLAHE, a preprocessing technique that divides 
the image into small blocks of a certain size and applies histogram equalization to each block17,18. In addition, 
previous studies reported that image preprocessing improved the performance of the deep learning model in 
detecting coronavirus infected pneumonia35,36.

We found that 10-2 VF prediction error became greater as glaucoma progressed. On regression analysis, 
10-2 VF MD and average mGC/IPLT were negatively correlated to the global prediction error. This result is 
consistent with those of previous studies reporting that 24-2 VF MD was significantly associated with 24-2 VF 
prediction error7,11.

This study has some limitations. First, all 10-2 VF and SS-OCT data were acquired from Korean patients at a 
single center. Girkin et al.37 have reported that the measurements of ONH, RNFL, and macular parameters vary 
by race. Thus, our deep learning method may not be widely applicable to other ethnic groups. Future work on 
multi-central datasets would enable us to determine the generalizability of these deep learning models. Second, 
visual interpretability is always the Achilles’ heel of deep neural networks and ongoing area of research38. High 
model interpretability could help us provide detailed information about structure–function relationships. Our 
deep learning model generated a structure–function map by itself during the training process. In Fig. 5c, the 
CAM showed how a deep learning model constructed this map and indicated that the structure–function rela-
tionship was similar to that in previous studies21,27. Furthermore, the deep learning model considers not only 
specific mapping spots but also broad neighboring areas of OCT images. Finally, our study reported prediction 
errors for single SS-OCT/10-2 VF pairs. A larger proportion of the prediction error was attributable to the 
intrinsic variability of the 10-2 VF examination per se as well as to the prediction7,31.

In conclusion, the current study demonstrated that the deep learning models accurately predicted the 10-2 
VF from the SS-OCT images. The results obtained here suggest that this deep learning model can mitigate the 
need for 10-2 VF examination by utilizing SS-OCT imaging. We believe that precisely predicting the central VF 
loss from SS-OCT imaging might help clinicians efficiently individualize the frequency of 10-2 VF testing to a 
single patient in clinical practice and, thus, contribute to efforts for preventing vision loss in glaucoma patients.

Data availability
The data generated or analyzed during this study are available from the corresponding author [J.L] upon reason-
able request.
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