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Machine learning approaches 
demonstrate that protein 
structures carry information 
about their genetic coding
Linor Ackerman‑Schraier , Aviv A. Rosenberg , Ailie Marx  & Alex M. Bronstein *

Synonymous codons translate into the same amino acid. Although the identity of synonymous 
codons is often considered inconsequential to the final protein structure, there is mounting evidence 
for an association between the two. Our study examined this association using regression and 
classification models, finding that codon sequences predict protein backbone dihedral angles with a 
lower error than amino acid sequences, and that models trained with true dihedral angles have better 
classification of synonymous codons given structural information than models trained with random 
dihedral angles. Using this classification approach, we investigated local codon–codon dependencies 
and tested whether synonymous codon identity can be predicted more accurately from codon context 
than amino acid context alone, and most specifically which codon context position carries the most 
predictive power.

Synthesis of proteins by translation is a fundamental cellular process, occurring in the ribosome, where amino 
acids are sequentially added to a growing chain according to the mRNA genetic instructions. The standard genetic 
code consists of 61 codons (and 3 dedicated as stop signals) that map uniquely to one of the 20 amino acids 
as part of a highly conserved, universal code. All but two amino acids are encoded by multiple, synonymous, 
codons. Although synonymous codon usage is mostly thought to be inconsequential to protein structure, some 
studies have suggested otherwise. Experiments have shown that codon usage can affect the structure and stabil-
ity of mRNA and translation rate, which may in turn affect the structure of the resulting protein1–7. However 
the mechanisms by and the extent to which synonymous coding affects protein structure is still far from being 
fully understood.

We have recently uncovered a direct association between codon identity and the backbone dihedral angles 
φ and ψ , of the encoded amino acid, by comparing dihedral angle distributions of synonymous codons8. To 
determine if this association is detectable using other approaches, we apply regression based on deep neural 
networks (DNNs) and classification models based on gradient-boosted trees (XGB) and support-vector classifiers 
(SVCs) to determine: (i) whether protein structure prediction may be improved by using the genetic, rather than 
amino acid, sequence; (ii) whether the codon from which an amino acid was translated may be predicted given 
the final protein structure. Crucially, these questions need not assume a causal direction of the codon–structure 
association; that the association exists is, in principle, enough for these predictive tasks to be plausible. Adapting 
the structure–codon classification task to investigate codon–codon relations, we also sought to determine (iii) 
whether synonymous codon identity can be predicted from codon context better than from amino acid context, 
and if so, which context positions convey most predictive power.

Despite the considerable volume of research into protein structure prediction over the past half a century9–11, 
to the best of our knowledge, DNNs have not yet been used to probe for synonymous codon information in 
very local protein structure. Methods have been developed to predict the backbone dihedral angles as continu-
ous labels12–20, with the majority relying on DNNs and their ensembles19,21. Most methods use position specific 
scoring matrices (PSSM) produced by PSI-BLAST22 as the input features15–17,19,20 and some additionally include 
the seven physicochemical properties (7PCP)15–17,19,20,23. To capture local structure around a given amino acid, 
sliding windows of varying sizes are commonly used15–17,20.

Here we show that using true codon information in order to predict backbone dihedral angles results in a sta-
tistically significant reduction in prediction error when compared with predictions based on random synonymous 
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codons assignment of synonymous codons for each amino acid. We further show that providing the dihedral 
angles facilitates more accurate prediction of the true synonymous codon that was used to encode a specific 
amino acid. Both results provide additional evidence for the existence of a statistical dependence between synony-
mous genetic coding and local backbone structure. Finally, we demonstrate that codon usage at a focal position 
is significantly associated with the identities of synonymous codons around that position.

Results
To determine (i) whether codon sequences have lower φ and ψ prediction errors than the amino acid sequences, 
(ii) whether synonymous codon identity can be recognised from structural data; and (iii) whether synonymous 
codon identity prediction can be improved by giving codon context, we applied regression (Fig. 1a) and classi-
fication (Fig. 1b,c) models to local sequences in protein structures (Fig. 1). For the regression task we employed 
DNNs. Since these classification tasks have not been previously studied, we empirically compared DNN, SVC 
and XGB models. For Hypothesis 2, we selected XGB, and for Hypothesis 3, we selected SVC, which yielded 

Figure 1.   Schematic of model inputs and outputs for each hypothesis. Codon is indicated by c and amino acid 
is indicated by aa. Orange shading highlights the positions used as inputs. Only windows where all five positions 
have the same DSSP annotation were used and only H and E were considered, separately, in this work.
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better performance than the other models. Following the methodology of our recent distribution analysis of 
synonymous coding and backbone dihedral angle preferences8, we used only high resolution (better than 1.8Å) 
structures for which codons could be reliably assigned. Since we are using dihedral angles to describe the struc-
ture of the protein backbone, we included only structures where the electron density defines the position of these 
atoms well. Only windows where all five positions have the same DSSP annotation were used and only H (amino 
acids in α helices and referred to in this work as belonging to the α mode) and E (amino acids in β strands and 
referred to in this work as belonging to the β mode) were considered in this work. Additionally, α and β modes 
were analyzed separately to control for known codon preference differences between these secondary structures 
and to facilitate the detection of coding information in very local structural contexts24.

It is important to note that unlike most other prediction tasks involving protein structures, we are limited 
here in terms of data since we would like to explore questions regarding synonymous codon usage, and the 
genetic sequences used to express the proteins are currently not annotated in the Protein Data Bank or other 
major structural databases. The implication is that we use only a small subset of PDB structures for which we 
can reliably assign codons, namely those structures resulting from sequences which are less likely to have been 
codon optimised. Furthermore, there is no gold standard with which to compare our results. To address this 
limitation, we include a control experiment to provide a baseline for assessing the significance of results obtained 
in testing each hypothesis.

Hypothesis 1 (codon–structure): synonymous codon sequence information predicts protein 
backbone dihedral angles with lower error than amino acid sequence information.  State-of-
the-art dihedral angle prediction models use an amino acid sequence as their input. In order to probe whether the 
codon sequence carries additional information about the local structure, we trained a model which uses codons 
to predict protein backbone, φ and ψ , dihedral angles (Fig. 1a). To test this model against the null hypothesis that 
synonymous codons are not associated with differences in local structure, we evaluated the model once using 
true codon information on the test set and once using random synonymous codon information as a control. The 
random control codons were generated by random sampling of the synonymous codons from a re-normalized 
prior distribution of the codons after removing the true codon, as described in more detail in the “Methods”. It 
is important to note that the true codon was not used in the control sequences except in the case of amino acids 
encoded by a single codon. Our models utilized a similar architecture to those used in state-of-the-art dihedral 
angle prediction models, such as SPIDER25.

Comparison of the model errors showed that for the β mode, the model predicted φ and ψ with a statistically 
significantly lower error using the true codons compared to random synonymous codons, thus rejecting the null 
hypothesis (Table 1). True codon information did not improve prediction of φ or ψ in a statistically significant 
manner for the α mode. This result is expected, since the α mode is more rigid in structure than the β mode and 
so less likely to accommodate small, local structural variability26,27. It also agrees with our previous findings, 
that many synonymous codons have significantly different dihedral angle distributions in the β mode, but none 
were observed in the α mode8. Table 1 also shows that the φ mean absolute error (MAE) is lower than for ψ and 
that the error improvement using true codons is greater for φ , in both β and α modes. Previous works have also 
demonstrated that the prediction of φ is achieved with a lower error than ψ28. We demonstrate in Supplementary 
Fig. S1 that the angle estimation error obtained from our model is practically unbiased, with the mode, median, 
and mean being approximately zero degrees. The errors also show relatively low skewness.

Hypothesis 2 (structure–codon): protein backbone dihedral angle information improves syn‑
onymous codon identity classification accuracy.  Having shown that synonymous codon identity 
facilitates better prediction of dihedral angles, we wanted to explore whether structural information, namely the 
configuration of dihedral angles, can improve the accuracy of predicting the synonymous codon used to trans-
late a given amino acid. In order to design a framework which can test against the null hypothesis that dihedral 
angle information will not improve the accuracy of codon prediction, we trained a model to predict synonymous 
codon identity using the backbone dihedral angles and amino acid identity as the input. A comparison of the 
model’s accuracy was conducted using true structural information and random, control, structural information. 
The control structural information was derived from the same distribution as the true structural information but 
independent of codon identity. To that end, we re-sampled the structural data in order to obtain a balanced set of 
examples with the same number of examples for each codon (for more details, see “Methods”).

Table 2 shows the accuracy of synonymous codon classification when using true as compared to random φ and 
ψ angles, together or separately, as the input. The accuracy of synonymous codon classification was significantly 
improved in both the α and the β modes, when using the dihedral angles either together or individually. The 

Table 1.   True synonymous codon information reduces the prediction error of backbone dihedral angles. 
Significant results (p value < 0.05 ) are indicated with *. Significant values are in bold.

Secondary structure Error measure Error using true codons
Error using random 
codons

Error improvement using 
true codons p value

β mode
φ MAE 19.5° ± 21.5° 19.6° ± 21.4° 0.14° ± 1.47° < 0.001*

ψ MAE 21.2° ± 34.8° 21.2° ± 34.8° 0.05° ± 1.81° 0.02*

α mode
φ MAE 4.1° ± 6.0° 4.1° ± 6.0° 8E−4° ± 0.21° 0.6

ψ MAE 4.3° ± 6.0° 4.3° ± 6.0° 4E−4° ± 0.21° 0.4
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percentage of degradation of the true compared to the control angles in the α mode was lower than those in the β 
mode. only knowledge of the φ angle significantly improved codon classification Consistent with the conclusions 
of our first hypothesis, we find that the β mode and φ distributions are more strongly associated with synonymous 
coding information compared to the α mode. or ψ . Since it has been shown that amino acid families grouped by 
their number of synonymous codons show distinctive patterns of codon biases and are under different selective 
constraints we ran the analysis for each of these families separately (2, 3, 4, and 6 codon amino acid families). 
The results shown in Supplementary Table S1 indicate that the 6 codon family has the best predictive accuracy 
using the true dihedral angles relative to the control.

Hypothesis 3 (codon–codon): codon context information improves the accuracy of synony‑
mous codon identity prediction.  The finding that local structural information aids classification of syn-
onymous codon identity suggests that the classification approach can be useful in investigating other codon 
usage associations in local protein structure. Here we adapt the model above to probe codon–codon associations 
in local protein structures.

In order to test whether the identity of a central synonymous codon is associated with the local codon 
sequence, we trained a model using only the codon sequence as an input, with the task of predicting the central 
codon’s identity, and tested the null hypothesis that randomizing synonymous codon identities around the central 
codon will not affect the accuracy in predicting that central codon. More specifically, we tested the importance 
of specific locations either individually or grouped. In order to accomplish this, the model was evaluated once 
by using the true codons in all positions, and again in a control experiment by randomizing synonymous codon 
identity at the positions of interest. By using random synonymous codons at different positions, we were able to 
analyze how synonymous codon usage at particular positions affects prediction accuracy.

Our results show two main trends. Firstly the codon–codon dependence decays with distance from the central 
codon, and secondly, the existence of asymmetry in the extent to which adjacent coding information improves 
the prediction accuracy of a central codon. Figure 2 and Table 3 shows that in the β mode, the prediction accu-
racy of a central codon is most significantly affected by the identity of the codon that is translated immediately 
after that codon (position +1 in the sequence window). Furthermore, these results show that in the α mode all 
of the positions, except position −2 , statistically significantly affect the accuracy of predicting the central codon. 
Although in the α mode we see more positions with a significant association with the focal position compared 
to the β mode, Table 3 shows similar percentages of accuracy degradation in both modes. The smaller p values 
in the α mode are likely the consequence of the larger sample size, since larger sample sizes generally increase 
the probability of finding a significant relationship29.

The detection of codon–codon associations is expected and the first observable trend, that this dependence 
decays with distance from the central codon, is also not surprising. Codon pair usage bias has been long recog-
nised in Escherichia coli30 and more recently in human disease31,32. It has been suggested that codon translation 
efficiency in E. coli is modulated by adjacent single nucleotides33, that codon pair order significantly affects 
translation speed34, and more recently the case for a genetic code as a triplet of codons has been argued35. Studies 
have also shown that certain synonymous codons have preferences in transitions between secondary structures 
and coils24,36.

The second observable trend in our results is the existence of asymmetry in the extent to which adjacent 
coding information improves the prediction accuracy of a central codon. In our recent work8, we investigated 
the expected and observed number of codons in three locations of the β mode (first two, last two and all middle 
residues of the β strands) and found that there are some codons for which abundance at a particular location 
is significantly different ( p < 0.05 ) from the abundance observed in the full β mode, which could explain the 
asymmetry we observe in these results. In a preliminary work we carried out the same analysis on a larger data set 
including all bacterial proteins expressed in E. coli and observe that the asymmetry around the central position 
remains but is less prominent than in this data set of only E. coli proteins expressed in E. coli (results not shown). 
The existence of the phenomenon in a larger data set supports our conclusions and the lesser prominence may 
be explained by the fact that codon abundances and codon pair biases vary from species to species.

Table 2.   Structural information improves the classification accuracy of synonymous codon identity. 
Significant results (p value < 0.05 ) are indicated with *.

Secondary 
structure

Dihedral angle 
input

Accuracy using 
true angles

Accuracy using 
random angles

Accuracy degradation 
using random angles

% Accuracy degradation 
using random angles p value

β mode

φ and ψ 0.38 0.30 0.08 20.7 < 0.001*

φ 0.38 0.30 0.07 19.6 < 0.001*

ψ 0.36 0.30 0.05 15.2 < 0.001*

α mode

φ and ψ 0.36 0.32 0.04 10.6 < 0.001*

φ 0.34 0.32 0.03 7.3 < 0.001*

ψ 0.35 0.32 0.03 7.5 < 0.001*
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Figure 2.   The effect of randomizing synonymous codon identity at different positions, on the prediction 
accuracy of the synonymous codon identity at the central position. The relative codon assignment accuracy is 
the comparison between the accuracy using true and random synonymous codons and it is expected that this 
ratio will be 1 if true and random synonymous codons have equal prediction power, as suggested by the null 
hypothesis. Mean and 95% confidence intervals were estimated using bootstrapping: the original test set of size 
Nα = 9575 and Nβ = 3378 was subsampled with replacement to form 10, 000 independent samples of size 
Mα = 6000 and Mβ = 3000 for the α and β mode respectively. The corresponding p values for rejecting the 
null hypothesis are listed in parenthesis, and the calculation of the p values is explained in greater detail in the 
“Methods”.

Table 3.   Codon context information improves the prediction accuracy of the central codon. The accuracy 
with which a central codon is predicted was tested when different combinations of context positions were 
provided with random synonymous codon information. Random codon position indices are arranged 
according to the central codon which is being predicted. An empty set of random positions corresponds to 
using true codons in all the positions and this serves as the baseline for calculating accuracy degradation. 
Significant results (p value < 0.05 ) are indicated with *. Significant values are in bold.

Secondary structure Random codon positions Accuracy
Accuracy degradation using 
random codons

% Accuracy degradation 
using random codons p value

β mode

[] - All true codons 0.46 − − −

[−2 , −1 , +1 , +2] 0.43 0.02 5.4 0.01*

[−1 , +1] 0.45 0.01 2.6 0.1

[−2 , +2] 0.45 0.005 1.1 0.1

[−2 , −1] 0.46 0.003 0.6 0.4

[+1 , +2] 0.44 0.02 4.0 0.02*

[−2 , +1 , +2] 0.43 0.03 5.9 0.001*

[−2 , −1 , +2] 0.46 0.0 − 0.2 0.6

[+1] 0.44 0.02 3.5 0.02*

[−1] 0.47 − 0.01 − 2.4 0.9

[−2] 0.46 0.0 − 0.4 0.7

[+2] 0.45 0.01 1.5 0.1

α mode

[] - All true codons 0.47 − − −

[−2 , −1 , +1 , +2] 0.42 0.05 10.7 < 0.001*

[−1 , +1] 0.43 0.04 8.7 < 0.001*

[−2 , +2] 0.46 0.01 2.3 0.01*

[−2 , −1] 0.45 0.02 4.9 < 0.001*

[+1 , +2] 0.44 0.02 5.1 < 0.001*

[−2 , +1 , +2] 0.44 0.03 6.4 < 0.001*

[−2 , −1 , +2] 0.45 0.02 4.9 < 0.001*

[+1] 0.45 0.02 4.2 < 0.001*

[−1] 0.45 0.02 4.7 < 0.001*

[−2] 0.46 0.01 1.3 0.07

[+2] 0.46 0.01 2.3 0.002*
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Discussion
The machine learning models used in this work suggest the existence of non-trivial associations between syn-
onymous codon usage and the structure of the translated amino acid. This cannot be attributed to synonymous 
codon-specific secondary structure preference, since we analyzed the α and β modes separately. The analysis by 
secondary structure not only removes this potential bias but also reveals that the β mode retains more coding 
information than the α mode; perhaps not surprising given that α helices fold into more rigid structures.

We note that the statistically significant error improvements in structure prediction using codons (Hypoth-
esis 1) are very small, especially when compared to the size of the prediction error. It is worth recalling that our 
data set is of limited size, restricted to structures for which we have higher confidence in codon assignment. It 
may be that with more data, greater differences will be revealed. It is also worth noting that for proteins having 
a single and well defined structure, the vast majority of our data set, codon information is likely only retained 
at specific locations. Further studies should investigate how codon information can be best paired with other 
features and for which protein classes or specific locations in a protein, it can be most effective. The dependence 
between local backbone structure and synonymous coding was more pronounced when assigning codons from 
structure (Hypothesis 2). There, in the β mode, the prediction of the synonymous codon identity is improved by 
about 18% when the dihedral angles are provided. We note that the absolute accuracy of predicting the codon 
identity using the true structural data is not high (less than 0.38 in all cases). This is not surprising especially for 
the set of well folded, globular proteins that compose the data used in this study since we expect that the codon 
association will be detectable only in some locations of the final structure.

The detection of codon–codon associations in hypothesis 3 is expected and the first observable trend, that 
this dependence decays with distance from the central codon, is also not surprising. Codon pair usage bias 
has been long recognised in E. coli30 and more recently in human disease31,32. It has been suggested that codon 
translation efficiency in E. coli is modulated by adjacent single nucleotides33, that codon pair order significantly 
affects translation speed34, and more recently the case for a genetic code as a triplet of codons has been argued35. 
Studies have also shown that certain synonymous codons have preferences in transitions between secondary 
structures and coils24,36.

The second observable trend in our results is the existence of asymmetry in the extent to which adjacent 
coding information improves the prediction accuracy of a central codon. In our recent work8, we investigated 
the expected and observed number of codons in three locations of the β mode (first two, last two and all middle 
residues of the β strands) and found that there are some codons for which abundance at a particular location 
is significantly different ( p < 0.05 ) from the abundance observed in the full β mode, which could explain the 
asymmetry we observe in these results. In a preliminary work we carried out the same analysis on a larger data set 
including all bacterial proteins expressed in E. coli and observe that the asymmetry around the central position 
remains but is less prominent than in this data set of only E. coli proteins expressed in E. coli (results not shown). 
The existence of the phenomenon in a larger data set supports our conclusions and the lesser prominence may 
be explained by the fact that codon abundances and codon pair biases vary from species to species.

The major novelty and contribution of this work is in demonstrating that machine learning methods can 
detect significant local codon–structure and codon–codon associations. It is important to stress that the consist-
ency of conclusions from our models for Hypothesis 1 and 2 is non trivial. We probed these hypotheses with a 
different type of model, prediction task, and control experiment; yet the conclusion that a synonymous codon-
dihedral angle association exists for the β mode remains consistent. We believe that our findings highlight the 
need for inclusion of genetic sequences in protein structure databases and that they will further promote the use 
of genetic sequences in protein structure prediction tasks.

Methods
Dataset.  We used the same data set as for our previous work Rosenberg et. al8. Full details of data collection 
are given in the “Methods” section of that work and a brief summary below.

High-resolution X-ray crystal structures with resolution no worse than 1.8Å and Rfree no worse than 0.24 
were collected from the PDB. Redundant chains, in terms of pairwise sequence similarity, were excluded, as 
well as chimeric chains for which there was more than a single Uniprot identifier. The Rfree − R value was less 
than or equal to 0.7 for all structures with the following exceptions, which were included in the final dataset; 
(i) two structures had a slightly higher value of 0.9 and (ii) fifteen structures reported only the Rfree and not the 
R value. Since the genetic sequences used to express each structure are not available in the PDB, a codon was 
assigned to each residue by aligning the amino acid sequence with genetic sequences cross-referenced from 
the structures’ corresponding Uniprot record. Residues with an ambiguous or missing codon assignment were 
discarded from analysis. To reduce the chance of inaccurate codon assignment due to the widespread practice 
of codon-optimization, only E. coli proteins expressed in E. coli were used.

Data splitting based on secondary structure.  This work considered, separately, only regions having 
the DSSP secondary structure assignment37 E ( β mode) or H ( α mode). By empirical evaluation, we chose an 
overlapping sliding window of size five as effectively ensuring context dependence of assumed local conforma-
tions. We only included windows where all the amino acids in that window had the same, E or H, DSSP assign-
ment.

Handling imbalanced data in classification problems.  In the classification tasks of Hypotheses 2 and 
3, our labels were codons. Since synonymous codons have vastly different relative abundances, our training data 
was unbalanced. In order to avoid a sampling bias associated with this imbalance, we used an over-sampling 
approach. In Hypothesis 2, for each amino acid family, we denote the amino acids that belong to this family as 



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21968  | https://doi.org/10.1038/s41598-022-25874-z

www.nature.com/scientificreports/

[aa1, . . . , aak] , and the codons that encode those amino acids by [c11 , . . . , c1n1 , . . . , ck1 , . . . , cknk ] . We consider the 
codon ci among [c11 , . . . , c1n1 , . . . , ck1 , . . . , cknk ] with the highest number of examples in the training set, denoted 
by m. We then over-sample the training data of that amino acid family from all codons except ci in order to 
ensure that every codon has exactly m examples in this family. In Hypothesis 3, for each amino acid, we denote 
the codons that encode that amino acid by [c1, . . . , cn] , and among those codons, we consider the codon ci with 
the highest number of examples in the training set, denoted by m. We then over-sample the training data from 
all codons except ci in order to ensure that every codon has exactly m examples.

Description of models used for each hypothesis.  Hypothesis 1 (codon–structure). 

•	 Input features. We use a sliding window of five amino acids in which for each amino acid we utilized the 
standard genetic information by encoding the codon identity in a 61-dimensional one-hot encoding vector 
(Fig. 1a). In addition, for each position, we input the seven physicochemical properties38 (7PCP) and 20 
values obtained from the PSSM generated by three iterations of PSI-BLAST22 against the UniRef90 sequence 
database updated in April 2018.

•	 Predicted outputs. The model predicts the φ and ψ angles directly. We handle the angles’ periodicity (− 180◦ 
to 180◦ ) using the tanh activation function in the last layer, which returns values in the range (− 1, 1) and 
re-scale them by multiplying those outputs by 180. The loss function is calculated on the re-scaled values.

•	 Loss functions. We use the Manhattan distance ( L1 norm) loss function. For each predicted angle, φ̂ and 
actual angle, φ , we calculate the absolute error AE = |φ̂ − φ| . The Manhattan distance is the sum of the 
absolute error of φ and ψ , |φ̂ − φ| + |ψ̂ − ψ |.

•	 Model architecture and implementation

–	 Neural network architecture We employed two different, fully connected deep neural networks 
(FCDNNs), one to the β mode model ( β mode FCDNN) and the other to the α mode model ( α mode 
FCDNN). The β mode FCDNN had the corresponding layers: 440→32/64/128→ 2, while the α mode 
FCDNN had the corresponding layers: 440 →16/32/64/128→ 2. The activation function in the output 
layer was tanh and relu in the input and the hidden layers.

–	 Model Training. Training was performed using a stochastic gradient descent (SGD) optimiser with 
momentum 0.9, and decaying learning rate starting at 0.01 and reduced by a factor of 0.5 each time 3 
successive epochs produce no improvement in the validation loss, flattening at 10−15 . The training was 
terminated if the validation loss functions did not improve in 10 consecutive epochs. The parameters 
were initialized using the xavier-uniform initialization.

–	 Ensemble model. The predictions were made by an ensemble model which combines the predictions 
of 50 different FCDNNs. We trained each model on a random split of the training data, as follows: we 
randomly selected 40 Uniprot ids to define the PDB structures of the validation set, and the remaining 
Uniprot ids were used for defining the training set. As a result, 50 models were obtained, each trained 
on a different subset of the training data. The test set was kept aside and was the same for each model 
used to construct the ensemble model.

•	 Construction of control synonymous codons—As control codons, we used random false synonymous 
codons. In order to account for the different abundances of synonymous codons, we randomized a given 
codon c0 with n synonymous codons {c1, c2, . . . , cn} . Let us denote by {pc0 , pc1 , pc2 , . . . , pcn} the probabilities 
of all synonymous coding possibilities estimated from the codon frequencies in the training set. We re-
normalized this prior distribution by removing the true codon c0 , meaning for each synonymous variant 
i ∈ {1, . . . , n} , probability p′ci =

pci
1−pc0

 was assigned. Note that 
∑n

i=1 p
′
ci
= 1 . Finally, we randomly selected a 

codon from {c1, c2, . . . , cn} based on the distribution {p′c1 , p
′
c2
, . . . , p′cn} , and this codon was be used as the 

input to the model in place of the true codon c0 . Since the process described above is performed on all codons 
in each input window, we obtained that the input to the model consists of random, false synonymous codons.

•	 Analysis of the effect of codon sequence information on the prediction of protein dihedral angles. We 
calculated two mean absolute error (MAE) measures for each of those evaluation methods: φ MAE and ψ 
MAE. For each predicted angle, φ̂ and actual angle, φ , the absolute error was calculated AE = |φ̂ − φ| , fol-
lowed by averaging over all prediction. The p value w.r.t. the null hypothesis, that the codon information 
does not reduce the prediction error of backbone dihedral angles, was calculated by comparing the results 
obtained using the true and the random false synonymous codons using the one-sided paired t-test, separately 
for each of the two error measures ( φ MAE and ψ MAE), resulting in a total of two p values per model.

Hypothesis 2 (structure–codon). 

•	 Input features and predicted outputs. For each window of five amino acids that share the same secondary 
structure, we focused on the central amino acid. Thus, the model only considered the central amino acid, and 
no context was taken into account. As the input to the model, the amino acid information and the dihedral 
angle of its backbone in the given window were provided. The amino acid was encoded with a 20-dimensional 
one-hot encoding vector and the backbone dihedral angle is normalized to be in the range [−1,+1] by divid-
ing each angle by 180. Our experiment included providing the φ and ψ angles together or separately. Given 
the input mentioned above, the model predicted a single output, the codon for the central amino acid.
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•	 Model architecture and implementation. We utilized the xgboost implementation of the XGB Classifier. 
We handled the multiclass classification using the softmax objective, which returns the predicted class. On 
the basis of the evaluation set, the default parameters of the XGB classifier were selected.

•	 Construction of control structural information. We used random backbone dihedral angles as control 
structural information. To randomize the angle of a given the i-th amino acid, let us refer to aai , φi , ψi and 
ci as their respective amino acid, backbone angles, and codon. First, we filter all of the training set examples 
to find those that come from the same amino acid family as our example aai . Over-sampling is then used 
to balance this filtered set so that we have the same number of examples of each codon encoding aai in this 
amino acid family. We then filter the balanced set of examples to have only examples of codons encoded by 
aai and we randomly select the j-th example from among this balanced set of examples and use its backbone 
dihedral angles φj and ψj as control angles, instead of the true backbone dihedral angles φi and ψi , and retain 
the target codon as ci.

•	 Analysis of the effect of protein dihedral angles on synonymous codon identity classification. To compare 
the performance of using the true and random backbone dihedral angles, the accuracy measure was used. 
Each example from the test set was evaluated on the pre-trained classifier. We denote the classification result 
(True or False) using the true backbone dihedral angles as r1 and using the random backbone dihedral angles 
as r2 where r1, r2 ∈ {T , F} . For convenience, we will denote the joint classification outcome of the two evalua-
tion methods as rr1,r2 , where rr1,r2 ∈ {rT ,T , rF,F , rT ,F , rF,T } . Over all the test set, we sum the number of times we 
obtain each classification outcome denoting as {NT ,T ,NF,F ,NT ,F ,NF,T } respectively. To calculate the accuracy 
of using the true vs. random backbone dihedral angles, we compared NT ,F ,NF,T . NT ,F indicates the number 
of times classification error was incurred when randomizing the backbone dihedral angles but not incurred 
when using the true backbone dihedral angles and NF,T indicates the number of times classification error 
was incurred when using true backbone dihedral angles but not incurred when randomizing the backbone 
dihedral angles. Relative codon assignment accuracy is calculated as NT ,F

NF,T
 . The exact one-sided binomial test 

was used to calculate the p value to determine the significance of the true backbone dihedral angles using 
NT ,F being superior to random angles results using NF,T in the classification task.

Hypothesis 3 (codon–codon). 

•	 Input features and predicted outputs. For each position in the window of five, we attempted to predict from 
the context of the codons [c−2, c−1, c+1, c+2] the identity of the central codon c0 , out of the synonymous vari-
ants encoding amino acid aa0 . In order to use genetic information for classification, we encoded the context 
codons of each amino acid in the window in a 61-dimensional one-hot encoded vector. The amino acid 
identity of the central amino acid was encoded with a 20-dimensional one-hot encoding vector.

•	 Model architecture and implementation—We utilized the sklearn implementation of Linear SVC and 
applied a one-vs.-all strategy to deal with multiclass cases. The regularization parameter (C) was set to 0.035.

•	 Construction of control synonymous codons. The construction of control synonymous codons was per-
formed as in Hypothesis 1.

•	 Analysis of the impact of codon context on the classification of central synonymous codon identity. We 
calculated the accuracy of using true and control synonymous codons to compare their performance using 
the relative codon assignment accuracy. To determine whether genetic information is more preferable to 
synonymous random codons, the p value was calculated as Hypothesis 2, using the exact one-sided binomial 
test.

Data availability
The data used in this study are freely available39.

Code availability
The code implementing the described data collection and analysis methods has been deposited in the e Zenodo 
repository [https://​doi.​org/​10.​5281/​zenodo.​68143​22]. Code is available under restricted access conditioned on 
user identification and agreement to academic use license.
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