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Caputo-Fabrizio fractional
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with Newtonian heating and heat
generation
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In this research article the heat transfer of generalized second grade fluid is investigated with heat
generation. The fluid flow is analyzed under the effects of Magneto hydrodynamics over an infinite
vertical flat plate. The Newtonian heating phenomenon has been adopted at the boundary. For

this purpose the problem is divided into two compartments i.e. momentum equation and energy
equations. Some specific dimensionless parameters are defined to convert the model equations into
dimensionless system of equations. The solutions for dimensionless energy and momentum equations
are obtained by using the Laplace transform technique. From obtained results by neglecting magneto
hydrodynamic effects and heat source some special case are achieved which are already published

in literature. The case for which the fractional parameter approaches to the classical order is also
discussed and it has been observed that it is convergent. Finally, the influences of different physical
parameters are sketched graphically. It has been observed that for increasing values of Prandtl number
the velocity and temperature decreases, for increasing values of Grashof number the velocity of the
fluid increases. Also it has been investigated that for increasing values of fractional parameter the
velocity and temperature of the fluid increases.

List of symbols

u [LT] Fluid velocity

T [6] Temperature

t [T] Time

C, [L’MT™'67'] At constant pressure the specific heat

g[LT7?] Acceleration due to gravity

k [MLT3671] Thermal conductivity or heat conduction of the fluid
p [IMLT'T] Dynamic viscosity

v [L*T Y] Kinematic viscosity

p [ML™] Fluid’s density

Br07'] Coeflicient of volumetric expansion of thermal
T, [0] At plate the fluid temperature

T, [0] The fluid temperature away from the plate

Gr Grashof number of thermal

o Second grade parameter (Dimensional)

y Second grade parameter (Dimensionaless)

Pr ( % > Prandtl number

s Parameter of Laplace transform

Basically the non-Newtonian fluids are divided into three main groups according to their actions with shear stress
i.e. integral type, differential type and rate-type. (1) The integral type fluids are those fluids, whose shear stress is
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hardly dependent upon the shear rate. (2) the fluids whose shear strain and shear rate are related to each other
are called differential type. (3) those fluids which have the properties of viscosity and elasticity are known as rate
type. Grade Second fluids belongs to differential type which is more famous among the various popular models
of the non-Newtonian fluids. The pioneers who designed the second grade fluid model were Coleman and Noll'.
Subsequently, this framework was used for the analysis of different problems whose construction is relatively
simple. The second-order Rivlin-Erickson equations has been applied to explain the pattern of a non-Newtonian
fluid flowing unsteadily upon a flat surface as like the Couette flow and Poiseuille flux?. Many authors have been
studied some of the unsteady flows of the second grade fluid**. Derivatives are mostly used to formulate the real
world problems into mathematical models. In particular, fractional derivatives are more suitable for some well-
known problems than regular derivative. In recent past the application of fractional order derivatives has been
expanded in distinct fields. Especially, in dynamics of fluid, viscoelasticity, bioengineering, electrochemistry,
finance, fluent currents tracers and in signal processing. Particularly, fractional derivatives are more suitable for
some major problems than regular derivatives®”’. The fractional derivative models are used widely in different
directions like, polymers for glass transition and glass state referable that the fractional derivative models can
easily explains the complex behavior of a viscoelastic fluid®-'!. Free convection flow of generalized viscous fluid
upon a vertical plate with chemical and Newtonian heating is investigated in'?. The fractional second grade fluid
investigated by using the Caputo fractional derivatives'’. In the near past Caputo and Fabrizio have presented a
new fractional operator know as Caputo-Fabrizio operator, which has been used in many theoretical real word
phenomena'®. The generalized second grade fluid is investigated with Caputo-Fabrizio differential operation
by adopting the Laplace transformation technique, and obtained the exact solutions to the problem'®. Exact
analytical for viscous fluid with non-singular kernal differential operator is gained'®. Due to the rising concern
of fractional derivative modeling many fractional models have been modeled using the existing models of
fluid'”~*. The convection heat-mass transfer of generalized grade second fluid is analyzed, and results achieved
by Caputo-Fabrizio is compared Atangana Baleanu fractional operator®. The author analyzed heat transfer
in convective flow of second grade fluid subjected to Newtonian heating using Atangana Baleanu fractional
and Caputo Fabrizio fractional derivative. They also carried out the comparison of the two approaches*. The
heat transfer in MHD flow of generalized second grade fluid with porosity in the medium by adopting Caputo
Fabrizio derivative?>. Heat transfer during the unsteady magneto hydrodynamic flow of a differential-type fluid
in Forchhiemer medium was analyzed numerically®. The unsteady magneto hydrodynamic flow of viscoelastic
fluid flowing in a porous medium?®*. Heat transfer during the incompressible time-dependent flow of Maxwell
viscoelastic fluid by some stretching surface with chemical reaction and radiation source was investigated in®.
The analysis of rate type anomalous Nano-fluid with Caputo non-integer order derivative flowing unsteadily was
studied in?®. The two-dimensional and two-directional MHD flow of fractional viscoelastic fluid was analyzed
in%. The authors studied the unequal diffusivities of chemical species in a Forchhiemer medium by using Scott
Blair model of viscoelastic fluid with unsteady convection in?. The author studied the effects of mixed convec-
tion with thermal radiation and chemical by using the space-time coupled Cattaneo-Friedrich Maxwell Model
with Caputo fractional derivatives in a porous medium?. The authors used the fractional calculus to analyzed
the thermo-diffusion phenomenon numerically in a Darcy medium®. Khan and Rasheed studied the numerical
implementation and error analysis with variable heat flux of coupled non-linear fractional viscoelastic fluid in®'.
Mumtaz et al.*? studied the computational simulation of viscoelastic model of Scott Blair to the hybrid fractional
Nanofluid in a porous Darcy medium.

The main aim of this article is to extend the application of Caputo Fabrizio fractional derivative to the sec-
ond grade fluid with magneto hydrodynamic effects in addition to the heat generation. Also the considered
Newtonian heating is adopted at the boundary. The exact analytical solution has been achieved by using Laplace
transformation on the dimensionless equations of the problem with suitable initial and boundary conditions.
From obtained results by neglecting magneto hydrodynamic and heat source some special case are achieved
which are published in literature. The case for which the fractional parameter approaches to the classical order
also discussed and it has been observed that it is convergent. The exact solution of the problem is represented
graphically to visualize the effects of physical parameters like time fractional, Magneto hydrodynamic, Prandtl
number, Eta and Grashof Number etc.

Mathematical analysis of the problem

Consider the second grade fluid of unsteady flow over in an infinite upright plate with Newtonian heating at the
boundary, flow direction is x-axis and y-axis is perpendicular to the flat plate. When t= 0 both the fluid and the
plate are at rest and the fluid temperature is Too. But as time start i.e., for ¢t > 0 then temperature is

%| 0= —%T(O, t) and fluid velocity becomes u(0,t) = H(t)coswt. The temperature and velocity are
y:

dependent on time t and y only. Now by usual Boussinesq’s approximation'é. the unsteady flow is governed by
the following set of partial differential equations. The flow of the fluid is represented by the following governing
equations. The schematic diagram used in fluid flow problem is represented geometrically by Fig. 1.

Bu(y, t) _ U8214()/, t) ﬂ83u(y, t) ap?

ot 3y? o oyt p "

(1) +gB(T(yt) — Tox) (1)

0T(nt) _ 0 TGt) _

PGy 5~ QT0n0) ~ Tx) @

The initial (ICs) and boundary (BCs) conditions are
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Figure 1. Geometry of the problem.

u(,0) =0, T(,0) =T, Vy=0 (3)
BT(y, t) h

u(0,t) = H(t)coswt, | =—-T(,t), t>0 4)
3y o k

u(y, t) — 0, T(y, t) — Too, asy — oo, t> 0[16]. (5)

where u denotes the fluid velocity [ms~!], T denotes the fluid temperature [k]v Kinematic viscosity [m2s~1],
g Acceleration due to gravity [ms™2], p Density of the fluid [gkm_3 l,o Electrical conductivity [S/m],B Uni-
form magnetic field, 8 Volumetric coefficient of thermal expansion [K~*],C, Specifc heat at a constant pressure
[jkg 'K}, k Termal conductivity of the fluid [Wm~2K~"], T, denotes Fluid Temperature far away from the
sheet, Q denotes Heat generation,«; Second grade parameter.

Dimensionless variables

The following dimensionless variables are utilized to gain a system of dimensionless governing equations from
the set of dimensional governing equations.

T — Ty
, , Tk = ,
g(k)z k Too
v\h
h\? k> k\?2
y*:ﬂ Y= Q ) Mzcrﬂo k
o \ k pvCph? ov \ h

Using these dimensionless variables given in Eq. (6) in Eqgs. (1)-(2) and dropping out the star (*) notation,
the governing Eqgs. (1)-(2) take the simplest forms

Gr = BT,

(6)

du(y,t)  0%u(y,t) Buy, 1)
= — Mu(y,t GrT (y,t
o1 2 T o0 u(y,t) + GrT (y, t) 7)

IT(y,t) 1 *T(y,1)
= — —mT(y,t
ot Ppr a2 M (1) ®)
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To find a time-fractional order derivative model just interchange the time derivative of classical order with the
time derivative of order o € [0, 1], then as a result the following system of governing equations come into being:

u(y, t)

Dfu(y,t) = (1+ DY) 22 — Mu(y,t) + GrT (y1) )
. 1 32Ty, 1)
DET (y,t) = E# —mT(yt) (10)

The appropriate non-dimensional initial and boundary conditions are

u(y,0) =0,T(y,0) =0,¥y >0 (11)
0T (y,1)
u(0,t) = H(t)coswt, | =—(TO,t)+1),t>0 (12)
ay y=0
u(,t)—)O,T(,t)—)Too,asyﬁoo,t>0 (13)

The fractional operator used in this problem is Caputo—Fabrizio which is defined as under in (14) for« € [0, 1],

DO‘ 7/ ( x (t )u (t)dt (14)

Analytical Laplace transform solutions
In the above model, the solution of Egs. (9) and (10) with initial and boundary conditions (11) and (12) will be
obtained by applying Laplace transform.

Solution for the temperature equation.  With the help of Laplace technique we derived the differential

equation
sT(y,s) 1 3%T(y,s)
% =— Z —mT(ys), (15)
s(l—a)+a Pr 9y
Letay = 1 —> then the equation
aosT(y, s) 1 82T(y, s) —
- - T 59 )
s+ aap Pr 93y? () (16)
T (y, _ 1 _
M _—(T(O,s)—{—f), and T(y,s) > 0, asy — oo, (17)
ay y=0 s
The solution of the Eq. (16) with the boundary condition is in (17), then the transformed solution becomes
as under,
T= ! lexp_y Pr<5+”‘“0 +771)

(18)

s
Pr( e +m) -1
Using appendices (A_1) and (A_2) we get
T( ,t) = (p(y, t,Pmo,Prm,otao) * 11/()/, t,Pmo,Prm,otao).

Solution for the velocity equation. By using the Laplace transform method to Eq. (9) and keeping in
mind the appropriate initial and boundary condition in (12),

agsii(y,s) _ 3%u(y,s) < aoys )825( ,$) . _
(s +aag)  9y? + s+ aag 3y2 Mi(y,s) + GrT(y,s) (19)
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3%u(y,s) ags + M(s +aag) | _
) .9
y 1+ apy)s + aag

—y./P 0% 4
—Gr(s + aap) 1 exp ype( i) (20)

- (14 apy)s + aag
Pr( s +m) -1
1

where ap = - and #(y, s) is a Laplace transform of u(y, ) which has to fulfill the conditions

N

N

= ar o u(y,s) >0 as y— oo (21)

u(y.s)

By using the above conditions in Eq. (21), the general solution of the Eq. (20) in simpler form is

_ s 1 2 4 1 —yy /st
i) = | g — (T4 S+ o eIV Se
24+ w s s+dy s+dy s+mg pp( _sos
(st ) 1
- (22)
s+
S £ i 8 eIV
+ 1=+ + +
s s+d s+dy s+mg 0
Pr(s+rxu0 + 7)1) -1
Or
bys+ bys+
_ | bistag -y §+a;1 -y }iagl
_ _ s Y\ “sFap 81 e 82 4
u(y,s)—sz+wze T T s+d
Pr(cfg +m) -1 pr (o +m) — 1
bys+ bys+ hys+h
5/ ey 7\ et ) 2
&3 84 € + 81
s+dy s+ mg s
Pr e +m) -1 Pr( o+ m) -1 Pr e+ m) -1
[ hys+hy [ hys+hy [ hys+hy
- - -
o e s+h3 e e s+h3 @ e s+h3
s+d ags s+da ags s+mo ags
Pr(s+o¢ag +771>_1 Pr(s+aa0 +771)_1 P (S+o¢a0 +771>_1
(23)
where

ag+ M Maag adap
= ,ap = Ay = —————
(1 +apy) (1 +apy) (1 +aoy)

adag —Gr
my = ,my = ,
07 + apy ! (14 agy)(Prag + Prny — by)

Prniaag + Praa; + Prypya; — a1 — biaag Prmaaga; — aapay
,m3 =
Prag + Prn; — by Prag + Prn; — by

di= 5+ () 4o da = 52—/ (5) 4 my

_ m@a)’a o _ mi(=ditea))’(=dita) . _ mi(=drtaa))’(=dratar)  _ mi(=motaap)’(=mo+a)
81= Taidymg 82 T —diditd)(—diFmo) > 8 T —dy(=dyrd))(—dr+mo) *84 = —mg(—mo-+di)(—mo-+d2)

my =

h1 = Pr(ao + n1), hy = Prniaag, hs = aag
Using appendix (A_1) and (A_3) we get
u(y, t) = [cos wt — (g1 +gze_d1t +g3e_d2t +g4e_m°t) * (p(y, t, Pmo,Prm,aao)}
* ¢ (y,t,b1,a1,a2) + (g1 + ge Nt 4 grem ! +g4e_m°t)
* (p(y, t Prao,Prnl,aao) * d)(y, t,hl,hz,h3)

For Special Case o = 1:
When o = 1thenay = ﬁ—) o0
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T(y.t)
T(y.t)

Prny 4 Pr — by Prnia; —a;
m=——, m3= ———-
Pr Pr

myp I’I’lz2 myp m22
Gt SR
1 2+ 2 + m3 2 5 2 3

g1 =0,2=0,93=0,g4 = Obecause m,; =0
hi =00, hy=o00, h3=00

u(y,t) = [coswt x ¢ (y,t,b1,a1,a2)]
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Figure 3. Temperature profile for different values of Eta ;.

00 by — b
=5(t)e‘Nﬂ+/ Ay

_ ais+ b
9 (y,t,a1,b1,a1by,) = L1 -
O-toa1.br.anb) {eXP< 4 ) o 2uym t

s+ b,

2
x e% X eihztiaw x I (2 (a1by — bg)ut)du

Special Cases

(i) Inthe absence of heat generation (1; = 0) and considering T(0,t) =T, condition of fluid temperature in

TOn) .
place of 3y |y=0 = —(T(0,t) + 1)weget;
The result given (24) is uniform to the published literature given in '¢ .

Ty,t) =, t;Pry,ay) 0<a<l1

where
(24)

2Pry o sin (yx —avix?
et Pry,ay) =1- v 0) eX< v )dx,

T ox(Pry+x2) Pry + x2
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Figure 4. Temperature profile for different values of Prandtl number Pr.

(ii) Inthe absence of MHD effect and considering u(0, t) = fH (t)e!! condition of fluid’s velocity at boundary
in place of u(0, t) = H(t)coswt condition we get;

u(y,t) = Ur(n, t) + U2(, 1) + ¥ (. £; a1, a2, iw)

where
Ui(p,t) = (1 —di —d3)e(y, t; ar,a2) + (di + d3)e(y, t; Pry,ay)
+d3[Y (. t; Pry,ay, —b2) — ¥y (1, t; a1, a2, —b2)] (25)

t

Uz(y, 1) = dz/ (e, t: Pry,ay) — (. t; a1, a2)|dt
0

The result given (25) is uniform to the published literature given in'®.

Numerical results and discussion

By using Mathcad software different physical parameters were drawn to analyze the effects of fluid velocity and
temperature. The parameter Alpha « in Fig. 2, Etan; in Fig. 3, and Prandtl number Pr in Fig. 4 are sketched for
temperature field, while for velocity field the Alpha « in Fig. 5, Eta n; in Fig. 6, Grashof number Gr in Fig. 7,
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-

Figure 5. Velocity profile for different values of Alpha c.

Magneto hydrodynamic MHD in Fig. 8 and Prandtl number Pr in Fig. 9 are presented with different values of
time t. Figure 2 is drawn to show the effects of alpha « for temperature profile in which it is observed that by
increasing the value of alpha «, the temperature is also increases. In this way the consistency of thermal boundary
layer is increases with the parameter alpha « and time t. Figure 3 is sketched to check the effect eta n; for tempera-
ture profile in which it is observed that by increasing the value of eta n; the temperature decreases, the consistency
of thermal boundary layer also decreases with the parameter eta ; and time t. Figure 4 is sketched to examine
the effects of the Prandtl number Pr in which it is noticed that by increasing the values of the parameter Pr, the
temperature profile decreases, as Prandtl number is the ratio of momentum diffusivity to thermal conductivity
by increasing the Prandtl number thermal conductivity decreases which cause to decrease the temperature of
the fluid. The Fig. 5 is drawn to examine the effects of fractional parameter alpha « on the velocity profile of the
fluid, and it is concluded that the velocity of the fluid increases with increasing values of fractional parameter
alpha «. Figure 6 is drawn to show the effects of n; on fluid velocity. From Fig. 6 it is noticed that velocity of the
fluid have inverse relation with the parameter eta 7, the velocity of the fluid decreases with the increasing values
of 1. Figure 7 is sketched to examine the effect of Grashof Gr number for velocity profile, here it is noticed that
by increasing the value of Grashof number the fluid velocity is increases, because Grashof number is the ratio of
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0.4

Figure 6. Velocity profile for different values of Eta ;.

inertia to viscous force, Grashof number is inversely proportional to viscous force, so increase in Grashof number
cause decrease in viscosity. It is obvious that for low viscosity the velocity is higher. That is why for increasing
values of Grashof number the fluid velocity increases. Figure 8 is drawn to show the effects of magneto hydro-
dynamic MHD on fluid velocity, here it is noticed that by increasing the value of Magneto hydrodynamic the
motion of fluid is decreases. Figure 9 are sketched to examine the effect of Prandtl number Pr on velocity fluid,
where we noticed that by increasing the value of Prandtl number, the velocity of the fluid is decreases. Figure 10
is shown in comparison with published result obtained in'®. Figure 11 is shown for @=1. From obtained results
by neglecting magneto hydrodynamic and heat source some special case are achieved which are published in
literature published by Shah and Khan in'®. The case for which the fractional parameter approaches to the clas-
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sical order also discussed and it has been observed that it is convergent.
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Figure 7. Velocity profile for different values of Grashof number Gr.

Conclusion

The considered study is about analyze the unsteady natural convection flow of generalized second grade fluid
with magneto hydro dynamic effects and Newtonian heating in addition to heat generation. Some special cases
of the obtained solution are discussed from which some well-known results are found in the published litera-
ture which are similar to published in'®. The exact solution of the problem achieved by using Laplace transform
technique are represented graphically to visualize the effects of physical parameters like time fractional, Magneto
hydrodynamic, Prandtl number, heat source and Grashof Number. From graphical results it is concluded that;

The increasing values of the Prandtl number and heat source reduce the temperature of the fluid.

The increasing values of the fractional parameter alpha increases the temperature of the fluid.

The increasing values of Prandtl number, heat source and MHD reduces the velocity of the fluid.

The increasing values of the fractional parameter alpha and Grashof number increases the velocity of the
fluid.

By neglecting the heat source temperature equation and MHD in velocity equation we obtained a published
which is given in®.
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Figure 11. Velocity profiles for special case alpha=1.
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