
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:22371  | https://doi.org/10.1038/s41598-022-26080-7

www.nature.com/scientificreports

Caputo–Fabrizio fractional 
model of MHD second grade fluid 
with Newtonian heating and heat 
generation
Sehra 1, Wajeeha Iftikhar 1, Sami Ul Haq 2, Saeed Ullah Jan 2, Ilyas Khan 3* & 
Abdullah Mohamed 4

In this research article the heat transfer of generalized second grade fluid is investigated with heat 
generation. The fluid flow is analyzed under the effects of Magneto hydrodynamics over an infinite 
vertical flat plate. The Newtonian heating phenomenon has been adopted at the boundary. For 
this purpose the problem is divided into two compartments i.e. momentum equation and energy 
equations. Some specific dimensionless parameters are defined to convert the model equations into 
dimensionless system of equations. The solutions for dimensionless energy and momentum equations 
are obtained by using the Laplace transform technique. From obtained results by neglecting magneto 
hydrodynamic effects and heat source some special case are achieved which are already published 
in literature. The case for which the fractional parameter approaches to the classical order is also 
discussed and it has been observed that it is convergent. Finally, the influences of different physical 
parameters are sketched graphically. It has been observed that for increasing values of Prandtl number 
the velocity and temperature decreases, for increasing values of Grashof number the velocity of the 
fluid increases. Also it has been investigated that for increasing values of fractional parameter the 
velocity and temperature of the fluid increases.

List of symbols
u [LT−1]	� Fluid velocity
T [θ]	� Temperature
t [T]	� Time
Cp [L2MT−1θ−1]	� At constant pressure the specific heat
g [LT−2]	� Acceleration due to gravity
k [MLT−3θ−1]	� Thermal conductivity or heat conduction of the fluid
µ [ML−1T−1]	� Dynamic viscosity
ν [L2T−1]	� Kinematic viscosity
ρ [ML−3]	� Fluid’s density
βT [θ−1]	� Coefficient of volumetric expansion of thermal
Tw [θ]	� At plate the fluid temperature
T∞ [θ]	� The fluid temperature away from the plate
Gr	� Grashof number of thermal
α1	� Second grade parameter (Dimensional)
γ	� Second grade parameter (Dimensionaless)
Pr 
(

µCp

k

)

	� Prandtl number
s	� Parameter of Laplace transform

Basically the non-Newtonian fluids are divided into three main groups according to their actions with shear stress 
i.e. integral type, differential type and rate-type. (1) The integral type fluids are those fluids, whose shear stress is 
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hardly dependent upon the shear rate. (2) the fluids whose shear strain and shear rate are related to each other 
are called differential type. (3) those fluids which have the properties of viscosity and elasticity are known as rate 
type. Grade Second fluids belongs to differential type which is more famous among the various popular models 
of the non-Newtonian fluids. The pioneers who designed the second grade fluid model were Coleman and Noll1. 
Subsequently, this framework was used for the analysis of different problems whose construction is relatively 
simple. The second-order Rivlin–Erickson equations has been applied to explain the pattern of a non-Newtonian 
fluid flowing unsteadily upon a flat surface as like the Couette flow and Poiseuille flux2. Many authors have been 
studied some of the unsteady flows of the second grade fluid3,4. Derivatives are mostly used to formulate the real 
world problems into mathematical models. In particular, fractional derivatives are more suitable for some well-
known problems than regular derivative. In recent past the application of fractional order derivatives has been 
expanded in distinct fields. Especially, in dynamics of fluid, viscoelasticity, bioengineering, electrochemistry, 
finance, fluent currents tracers and in signal processing. Particularly, fractional derivatives are more suitable for 
some major problems than regular derivatives5–7. The fractional derivative models are used widely in different 
directions like, polymers for glass transition and glass state referable that the fractional derivative models can 
easily explains the complex behavior of a viscoelastic fluid8–11. Free convection flow of generalized viscous fluid 
upon a vertical plate with chemical and Newtonian heating is investigated in12. The fractional second grade fluid 
investigated by using the Caputo fractional derivatives13. In the near past Caputo and Fabrizio have presented a 
new fractional operator know as Caputo–Fabrizio operator, which has been used in many theoretical real word 
phenomena14. The generalized second grade fluid is investigated with Caputo–Fabrizio differential operation 
by adopting the Laplace transformation technique, and obtained the exact solutions to the problem15. Exact 
analytical for viscous fluid with non-singular kernal differential operator is gained16. Due to the rising concern 
of fractional derivative modeling many fractional models have been modeled using the existing models of 
fluid17–19. The convection heat-mass transfer of generalized grade second fluid is analyzed, and results achieved 
by Caputo–Fabrizio is compared Atangana Baleanu fractional operator20. The author analyzed heat transfer 
in convective flow of second grade fluid subjected to Newtonian heating using Atangana Baleanu fractional 
and Caputo Fabrizio fractional derivative. They also carried out the comparison of the two approaches21. The 
heat transfer in MHD flow of generalized second grade fluid with porosity in the medium by adopting Caputo 
Fabrizio derivative22. Heat transfer during the unsteady magneto hydrodynamic flow of a differential-type fluid 
in Forchhiemer medium was analyzed numerically23. The unsteady magneto hydrodynamic flow of viscoelastic 
fluid flowing in a porous medium24. Heat transfer during the incompressible time-dependent flow of Maxwell 
viscoelastic fluid by some stretching surface with chemical reaction and radiation source was investigated in25. 
The analysis of rate type anomalous Nano-fluid with Caputo non-integer order derivative flowing unsteadily was 
studied in26. The two-dimensional and two-directional MHD flow of fractional viscoelastic fluid was analyzed 
in27. The authors studied the unequal diffusivities of chemical species in a Forchhiemer medium by using Scott 
Blair model of viscoelastic fluid with unsteady convection in28. The author studied the effects of mixed convec-
tion with thermal radiation and chemical by using the space–time coupled Cattaneo–Friedrich Maxwell Model 
with Caputo fractional derivatives in a porous medium29. The authors used the fractional calculus to analyzed 
the thermo-diffusion phenomenon numerically in a Darcy medium30. Khan and Rasheed studied the numerical 
implementation and error analysis with variable heat flux of coupled non-linear fractional viscoelastic fluid in31. 
Mumtaz et al.32 studied the computational simulation of viscoelastic model of Scott Blair to the hybrid fractional 
Nanofluid in a porous Darcy medium.

The main aim of this article is to extend the application of Caputo Fabrizio fractional derivative to the sec-
ond grade fluid with magneto hydrodynamic effects in addition to the heat generation. Also the considered 
Newtonian heating is adopted at the boundary. The exact analytical solution has been achieved by using Laplace 
transformation on the dimensionless equations of the problem with suitable initial and boundary conditions. 
From obtained results by neglecting magneto hydrodynamic and heat source some special case are achieved 
which are published in literature. The case for which the fractional parameter approaches to the classical order 
also discussed and it has been observed that it is convergent. The exact solution of the problem is represented 
graphically to visualize the effects of physical parameters like time fractional, Magneto hydrodynamic, Prandtl 
number, Eta and Grashof Number etc.

Mathematical analysis of the problem
Consider the second grade fluid of unsteady flow over in an infinite upright plate with Newtonian heating at the 
boundary, flow direction is x-axis and y-axis is perpendicular to the flat plate. When t= 0 both the fluid and the 
plate are at rest and the fluid temperature is T∞ . But as time start i.e., for t ≻ 0 then temperature is 
∂T(y,t)

∂y |
y=0

= − h
k T(0, t) and fluid velocity becomes u(0, t) = H(t)cosωt . The temperature and velocity are 

dependent on time t and y only. Now by usual Boussinesq’s approximation16. the unsteady flow is governed by 
the following set of partial differential equations. The flow of the fluid is represented by the following governing 
equations. The schematic diagram used in fluid flow problem is represented geometrically by Fig. 1.
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where u denotes the fluid velocity [ ms−1 ], T denotes the fluid temperature [ k],ν Kinematic viscosity [m2s−1] , 
g Acceleration due to gravity [ ms−2] , ρ Density of the fluid [ gkm−3],σ Electrical conductivity [S/m],β0 Uni-
form magnetic field, β Volumetric coefficient of thermal expansion [K−1],Cp Specifc heat at a constant pressure 
[jkg−1K−1] , k Termal conductivity of the fluid [ Wm−2K−1] , T∞ denotes Fluid Temperature far away from the 
sheet, Q denotes Heat generation,α1 Second grade parameter.

Dimensionless variables
The following dimensionless variables are utilized to gain a system of dimensionless governing equations from 
the set of dimensional governing equations.

Using these dimensionless variables given in Eq. (6) in Eqs. (1)–(2) and dropping out the star (*) notation, 
the governing Eqs. (1)–(2) take the simplest forms
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(6)

y∗ =
y
k
h

, t∗ =
t

1
ν

(

k
h

)2
, u∗ =

u

g
ν

(

k
h

)2
, Pr =

µCp

k
, T∗ =

T − T∞
T∞

, Gr = βT∞,

γ ∗ =
α1

ρ

(

h

k

)2

, η1 =
Qk2

ρνCph2
, M =

σβ0

ρν

(

k

h

)2

(7)
∂u(y, t)

∂t
=

∂2u(y, t)

∂y2
+ γ

∂3u(y, t)

∂y2∂t
−Mu

(

y, t
)

+ GrT
(

y, t
)

(8)
∂T(y, t)

∂t
=

1

Pr

∂2T(y, t)

∂y2
− η1T

(

y, t
)

Figure 1.   Geometry of the problem.
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To find a time-fractional order derivative model just interchange the time derivative of classical order with the 
time derivative of order α ∈ [0, 1] , then as a result the following system of governing equations come into being:

The appropriate non-dimensional initial and boundary conditions are

The fractional operator used in this problem is Caputo–Fabrizio which is defined as under in (14) for α ∈ [0, 1],

Analytical Laplace transform solutions
In the above model, the solution of Eqs. (9) and (10) with initial and boundary conditions (11) and (12) will be 
obtained by applying Laplace transform.

Solution for the temperature equation.  With the help of Laplace technique we derived the differential 
equation

Let a0 = 1
1−α

, then the equation

The solution of the Eq. (16) with the boundary condition is in (17), then the transformed solution becomes 
as under,

Using appendices (A_1) and (A_2) we get

Solution for the velocity equation.  By using the Laplace transform method to Eq. (9) and keeping in 
mind the appropriate initial and boundary condition in (12),
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where a0 = 1
1−α

 and u
(

y, s
)

 is a Laplace transform of u
(

y, t
)

 which has to fulfill the conditions

By using the above conditions in Eq. (21), the general solution of the Eq. (20) in simpler form is
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Using appendix (A_1) and (A_3) we get

For Special Case α = 1:
When α = 1 then a0 = 1
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g1 = 0 , g2 = 0, g3 = 0, g4 = 0 because m1 = 0
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Figure 2.   Temperature profile for different values of Alpha α.
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Special Cases

	 (i)	 In the absence of heat generation (η1 = 0) and considering T(0,t) = Tw condition of fluid temperature in 
place of ∂T(y,t)

∂y |
y=0

= −(T(0, t)+ 1)weget;

	The result given (24) is uniform to the published literature given in 16 .
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Figure 3.   Temperature profile for different values of Eta η1.
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	 (ii)	 In the absence of MHD effect and considering u(0, t) = fH(t)eiωt condition of fluid’s velocity at boundary 
in place of u(0, t) = H(t)cosωt condition we get;

The result given (25) is uniform to the published literature given in16.

Numerical results and discussion
By using Mathcad software different physical parameters were drawn to analyze the effects of fluid velocity and 
temperature. The parameter Alpha α in Fig. 2, Eta η1 in Fig. 3, and Prandtl number Pr in Fig. 4 are sketched for 
temperature field, while for velocity field the Alpha α in Fig. 5, Eta η1 in Fig. 6, Grashof number Gr in Fig. 7, 

(25)

u(y, t) = U1(y, t)+ U2(y, t)+ ψ(y, t; a1, a2, iω)
where

U1(y, t) = (1− d1 − d3)ϕ(y, t; a1, a2)+ (d1 + d3)ϕ(y, t;Pr γ ,αγ )
+ d3[ψ(y, t;Pr γ ,αγ ,−b2)− ψ(y, t; a1, a2,−b2)]

U2(y, t) = d2

t
∫

0

[

ϕ(y, t;Pr γ ,αγ )− ϕ(y, t; a1, a2)
]

dτ

Figure 4.   Temperature profile for different values of Prandtl number Pr.
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Magneto hydrodynamic MHD in Fig. 8 and Prandtl number Pr in Fig. 9 are presented with different values of 
time t. Figure 2 is drawn to show the effects of alpha α for temperature profile in which it is observed that by 
increasing the value of alpha α, the temperature is also increases. In this way the consistency of thermal boundary 
layer is increases with the parameter alpha α and time t. Figure 3 is sketched to check the effect eta η1 for tempera-
ture profile in which it is observed that by increasing the value of eta η1 the temperature decreases, the consistency 
of thermal boundary layer also decreases with the parameter eta η1 and time t. Figure 4 is sketched to examine 
the effects of the Prandtl number Pr in which it is noticed that by increasing the values of the parameter Pr, the 
temperature profile decreases, as Prandtl number is the ratio of momentum diffusivity to thermal conductivity 
by increasing the Prandtl number thermal conductivity decreases which cause to decrease the temperature of 
the fluid. The Fig. 5 is drawn to examine the effects of fractional parameter alpha α on the velocity profile of the 
fluid, and it is concluded that the velocity of the fluid increases with increasing values of fractional parameter 
alpha α . Figure 6 is drawn to show the effects of η1 on fluid velocity. From Fig. 6 it is noticed that velocity of the 
fluid have inverse relation with the parameter eta η1 , the velocity of the fluid decreases with the increasing values 
of η1 . Figure 7 is sketched to examine the effect of Grashof Gr number for velocity profile, here it is noticed that 
by increasing the value of Grashof number the fluid velocity is increases, because Grashof number is the ratio of 

Figure 5.   Velocity profile for different values of Alpha α.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:22371  | https://doi.org/10.1038/s41598-022-26080-7

www.nature.com/scientificreports/

inertia to viscous force, Grashof number is inversely proportional to viscous force, so increase in Grashof number 
cause decrease in viscosity. It is obvious that for low viscosity the velocity is higher. That is why for increasing 
values of Grashof number the fluid velocity increases. Figure 8 is drawn to show the effects of magneto hydro-
dynamic MHD on fluid velocity, here it is noticed that by increasing the value of Magneto hydrodynamic the 
motion of fluid is decreases. Figure 9 are sketched to examine the effect of Prandtl number Pr on velocity fluid, 
where we noticed that by increasing the value of Prandtl number, the velocity of the fluid is decreases. Figure 10 
is shown in comparison with published result obtained in16. Figure 11 is shown for α=1. From obtained results 
by neglecting magneto hydrodynamic and heat source some special case are achieved which are published in 
literature published by Shah and Khan in16. The case for which the fractional parameter approaches to the clas-
sical order also discussed and it has been observed that it is convergent.

Figure 6.   Velocity profile for different values of Eta η1.
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Conclusion
The considered study is about analyze the unsteady natural convection flow of generalized second grade fluid 
with magneto hydro dynamic effects and Newtonian heating in addition to heat generation. Some special cases 
of the obtained solution are discussed from which some well-known results are found in the published litera-
ture which are similar to published in16. The exact solution of the problem achieved by using Laplace transform 
technique are represented graphically to visualize the effects of physical parameters like time fractional, Magneto 
hydrodynamic, Prandtl number, heat source and Grashof Number. From graphical results it is concluded that;

•	 The increasing values of the Prandtl number and heat source reduce the temperature of the fluid.
•	 The increasing values of the fractional parameter alpha increases the temperature of the fluid.
•	 The increasing values of Prandtl number, heat source and MHD reduces the velocity of the fluid.
•	 The increasing values of the fractional parameter alpha and Grashof number increases the velocity of the 

fluid.
•	 By neglecting the heat source temperature equation and MHD in velocity equation we obtained a published 

which is given in16.

Figure 7.   Velocity profile for different values of Grashof number Gr.
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Figure 8.   Velocity profile for different values of MHD.

Figure 9.   Velocity profile for different values of Prandtl number Pr.
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Data availability
The datasets used and analyzed during the current study available from the corresponding author on reasonable 
request.
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