Table 4 Classification report of different models for sentiment analysis.
Class label | Measures | Logistic regression | CNN | Bi-LSTM | RoBERTa | BERT | Adapter-BERT |
---|---|---|---|---|---|---|---|
Positive | Precision | 0.42 | 0.62 | 0.05 | 0.22 | 0.23 | 0.38 |
Recall | 0.37 | 0.80 | 0.23 | 0.28 | 0.20 | 0.25 | |
F1-Score | 0.39 | 0.69 | 0.09 | 0.24 | 0.21 | 0.31 | |
Support | 614 | 2379 | 109 | 469 | 469 | 469 | |
Negative | Precision | 0.66 | 0.17 | 0.24 | 0.37 | 0.41 | 0.40 |
Recall | 0.76 | 0.08 | 0.46 | 0.37 | 0.36 | 0.39 | |
F1-Score | 0.71 | 0.11 | 0.32 | 0.37 | 0.39 | 0.43 | |
Support | 2058 | 542 | 282 | 542 | 542 | 542 | |
Mixed_Feelings | Precision | 0.27 | 0.28 | 0.92 | 0.74 | 0.73 | 0.82 |
Recall | 0.21 | 0.18 | 0.66 | 0.69 | 0.77 | 0.78 | |
F1-Score | 0.24 | 0.22 | 0.77 | 0.71 | 0.75 | 0.73 | |
Support | 601 | 686 | 3287 | 2379 | 2379 | 2379 | |
Unknown_State | Precision | 0.47 | 0.15 | 0.29 | 0.40 | 0.46 | 0.46 |
Recall | 0.40 | 0.09 | 0.51 | 0.42 | 0.45 | 0.39 | |
F1-Score | 0.43 | 0.11 | 0.37 | 0.41 | 0.46 | 0.44 | |
Support | 803 | 469 | 398 | 686 | 686 | 686 |