Table 4 Classification report of different models for sentiment analysis.

From: Deep learning based sentiment analysis and offensive language identification on multilingual code-mixed data

Class label

Measures

Logistic regression

CNN

Bi-LSTM

RoBERTa

BERT

Adapter-BERT

Positive

Precision

0.42

0.62

0.05

0.22

0.23

0.38

Recall

0.37

0.80

0.23

0.28

0.20

0.25

F1-Score

0.39

0.69

0.09

0.24

0.21

0.31

Support

614

2379

109

469

469

469

Negative

Precision

0.66

0.17

0.24

0.37

0.41

0.40

Recall

0.76

0.08

0.46

0.37

0.36

0.39

F1-Score

0.71

0.11

0.32

0.37

0.39

0.43

Support

2058

542

282

542

542

542

Mixed_Feelings

Precision

0.27

0.28

0.92

0.74

0.73

0.82

Recall

0.21

0.18

0.66

0.69

0.77

0.78

F1-Score

0.24

0.22

0.77

0.71

0.75

0.73

Support

601

686

3287

2379

2379

2379

Unknown_State

Precision

0.47

0.15

0.29

0.40

0.46

0.46

Recall

0.40

0.09

0.51

0.42

0.45

0.39

F1-Score

0.43

0.11

0.37

0.41

0.46

0.44

Support

803

469

398

686

686

686