Table 5 Classification report of different models for offensive language identification.

From: Deep learning based sentiment analysis and offensive language identification on multilingual code-mixed data

Class label

Measures

Logistic regression

CNN

Bi-LSTM

RoBERTa

BERT

Adapter-BERT

Not offensive

Precision

0.82

0.76

0.95

0.91

0.88

0.89

Recall

0.90

0.92

0.83

0.73

0.84

0.86

F1-Score

0.85

0.83

0.88

0.81

0.86

0.88

Support

2775

3049

3487

3049

3049

3049

Offensive targeted insult group

Precision

0.36

0.11

0.13

0.19

0.27

0.17

Recall

0.29

0.05

0.17

0.41

0.41

0.38

F1-Score

0.32

0.07

0.15

0.26

0.33

0.29

Support

384

302

222

302

302

302

Offensive targeted insult individual

Precision

0.42

0.12

0.11

0.30

0.33

0.43

Recall

0.30

0.05

0.12

0.39

0.35

0.38

F1-Score

0.35

0.07

0.12

0.34

0.34

0.32

Support

392

283

270

283

283

283

Offensive targeted insult other

Precision

0.00

0.00

0.00

0.06

0.00

0.00

Recall

0.00

0.00

0.00

0.15

0.00

0.00

F1-Score

0.00

0.00

0.00

0.09

0.00

0.00

Support

34

48

0

48

48

48

Offensive untargeted

Precision

0.40

0.23

0.06

0.37

0.42

0.44

Recall

0.32

0.08

0.23

0.49

0.41

0.43

F1 Score

0.36

0.11

0.09

0.42

0.41

0.44

Support

491

394

97

394

394

394