
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21510  | https://doi.org/10.1038/s41598-022-26161-7

www.nature.com/scientificreports

Diagnosis of nasal bone 
fractures on plain radiographs 
via convolutional neural networks
Yoonho Nam 1, Yangsean Choi 2*, Junghwa Kang 1, Minkook Seo 2, Soo Jin Heo 2 & 
Min Kyoung Lee 3

This study aimed to assess the performance of deep learning (DL) algorithms in the diagnosis of 
nasal bone fractures on radiographs and compare it with that of experienced radiologists. In this 
retrospective study, 6713 patients whose nasal radiographs were examined for suspected nasal bone 
fractures between January 2009 and October 2020 were assessed. Our dataset was randomly split into 
training (n = 4325), validation (n = 481), and internal test (n = 1250) sets; a separate external dataset 
(n = 102) was used. The area under the receiver operating characteristic curve (AUC), sensitivity, and 
specificity of the DL algorithm and the two radiologists were compared. The AUCs of the DL algorithm 
for the internal and external test sets were 0.85 (95% CI, 0.83–0.86) and 0.86 (95% CI, 0.78–0.93), 
respectively, and those of the two radiologists for the external test set were 0.80 (95% CI, 0.73–0.87) 
and 0.75 (95% CI, 0.68–0.82). The DL algorithm therefore significantly exceeded radiologist 2 
(P = 0.021) but did not significantly differ from radiologist 1 (P = 0.142). The sensitivity and specificity of 
the DL algorithm were 83.1% (95% CI, 71.2–93.2%) and 83.7% (95% CI, 69.8–93.0%), respectively. Our 
DL algorithm performs comparably to experienced radiologists in diagnosing nasal bone fractures on 
radiographs.

Abbreviations
CNN	� Convolutional neural network
DL	� Deep learning
Grad-CAM	� Gradient-weighted Class Activation Mapping

Nasal bone fractures are the most common fractures of the facial bones, accounting for up to 50% of all 
incidences1. Moreover, they represent the third most common bone fracture overall2. The anatomy of the nasal 
bone—a thin, protruded structure of the face—makes it especially vulnerable to fractures. Nasal bone fractures 
have various causes, including sports injuries, physical fights, traffic accidents, and falls3. Complications of nasal 
bone fractures vary in severity from mild forms, including nasal septal deviation, nasal obstruction, and olfactory 
disturbances, to more severe complications, such as cerebrospinal fluid rhinorrhea4. Careful physical, clinical, 
and radiographic examinations are primarily used to diagnose nasal bone fractures5.

Radiological modalities for diagnosing nasal bone fractures include high-resolution computed tomography 
(CT), plain radiography, and ultrasonography. Among these, CT shows the highest diagnostic accuracy and was 
found to also be superior in detecting other associated injuries6. However, plain nasal radiography still shows 
substantial reliability1, with a sensitivity of approximately 80%7. Considering the benefits of low radiation expo-
sure as well as its cost-effectiveness and accessibility, plain radiography remains the initial diagnostic tool for 
screening simple nasal bone fractures.

Deep learning (DL) is a specialized subset of machine learning, a multilayered information processing tech-
nique. The abilities of DL systems include self-extraction of data from raw input and self-learning, and DL-
based applications are emerging in various fields of medicine8. In recent studies, a specific subcategory of DL, 
convolutional neural networks (CNNs), have shown reliable and accurate performance in various radiological 
subspecialties; they are thus expected to show significant potential in improving patient outcomes in the future9. 
In medical imaging, DL has been applied in the diagnosis, classification, and prediction of outcomes or survival 
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from a variety of diseases; applications include, for example, fatty liver disease risk stratification from CT images, 
the diagnosis of prostate cancer from MRI, and the prediction of acute respiratory disease prognosis using CT9.

As conventional radiography is used in various medical subspecialties, a number of studies have reported on 
DL algorithms that detect abnormalities on radiographs and verified their diagnostic performance compared to 
that of radiologists. For instance, DL algorithms showed outstanding results in chest radiograph interpretation10, 
the detection of hip fractures11, and the diagnosis of moyamoya disease12, paranasal sinusitis13,14, proximal 
humerus fractures15, knee osteoarthritis16, pediatric skull fractures17, and developmental dysplasia of the hip18. 
Furthermore, a recent study explored the potential of DL in diagnosing nasal fractures in CT scans19. However, 
the DL-based detection of nasal bone fractures using conventional radiography has not been investigated. There-
fore, here, we aimed to design a CNN-based algorithm to detect nasal bone fractures on plain radiographs and 
compare its diagnostic performance with that of radiologists.

Results
Patients.  The baseline characteristics of the study cohort are summarized in Table 1. The training, valida-
tion, and internal test cohorts consisted of 4325, 481, and 1250 patients, respectively (mean age, 44–46 years; 
men, 58.5–68.2%; fractures, 45.2–46.2%). The external test cohort included 102 patients (mean age, 46 years; 
men, 52%; fractures, 57.8%). There were no significant differences among the cohorts in mean age (P = 0.101) 
or proportion of fractures (P = 0.06). There were significantly more men in the training and validation cohorts 
(67.6–68.2%) than in the internal and external test sets (52–58.5%) (P < 0.001).

Diagnostic performance of the deep learning model and radiologists.  On the internal test set, 
the DL model demonstrated excellent diagnostic performance with an AUC of 0.931 (95% CI, 0.915–0.944), 
sensitivity of 82.2% (95% CI, 78.3–86.5%), specificity of 89.6% (95% CI, 85.2–92.4%), and accuracy of 85.9% 
(95% CI, 84–87.8%) (Fig. 1a).

The diagnostic performance measures of the DL model and the two radiologists on the external test set are 
listed in Table 2. The DL model showed an AUC of 0.857 (95% CI, 0.782–0.931), sensitivity of 83.1% (95% CI, 
71.2–93.2%), specificity of 83.7% (95% CI, 69.8–93%), and accuracy of 83.3% (95% CI, 75.5–90.2%). The AUCs 
of radiologists 1 (blinded, with 9 years of experience) and 2 (blinded, with 6 years of experience) were 0.799 
(95% CI, 0.729–0.868) and 0.749 (95% CI, 0.676–0.819), respectively. The AUCs of the two radiologists did not 
significantly differ (P = 0.172). The inter-rater agreement between the two radiologists was substantial (Cohen 
κ coefficient, 0.67), whereas it was fair to moderate between the radiologists and the DL model (Cohen κ coef-
ficient, 0.28–0.41).

Comparison of diagnostic performance measures.  The AUC of the DL model was significantly 
higher than that of radiologist 2 (0.857 vs. 0.749; P = 0.021) but not significantly different from that of radiologist 
1 (0.857 vs. 0.799; P = 0.142). The ROC curves of the DL model and those of the two radiologists are depicted in 
Fig. 1b. Example radiographs of correctly diagnosed nasal bone fractures with Grad-CAM heatmaps are shown 
in Fig. 2. The nasal bone area was properly highlighted in the heatmap in both views for most patients (n = 90). 
For nine of the remaining 12 subjects, the nasal bone was highlighted in only one view while the nasal bone was 
not highlighted in both views in three patients. Additionally, examples of normal nasal radiographs incorrectly 
diagnosed as fractures by the DL model are shown in Fig. 3.

Discussion
The current study trained and validated a CNN-based DL model for the diagnosis of nasal bone fractures using 
plain bilateral radiographs. The DL model demonstrated excellent diagnostic performance on both the internal 
(AUC: 0.931) and external (AUC: 0.857) test sets. Furthermore, the DL model showed a diagnostic performance 
comparable to that of experienced radiologists (AUC: 0.749–0.799).

With regard to more recent studies comparing the diagnostic performance of DL and radiologists on con-
ventional radiographs, DL models have been shown to outperform radiologists in diagnosing maxillary13 and 
paranasal sinusitis14 and have demonstrated comparable diagnostic performance for pediatric supracondylar 
fractures20 and developmental dysplasia of the hip18 as well as general chest radiograph interpretation10. However, 

Table 1.   Baseline characteristics of patients. SD standard deviation. *P-values were calculated using one-way 
ANOVA or Pearson’s Chi-squared test, where appropriate.

Characteristics Training set (n = 4325) Validation set (n = 481)
Internal test set 
(n = 1250) External test set (n = 102) P-value*

Age, mean ± SD 44 ± 18 44 ± 18 46 ± 20 46 ± 19 0.101

Sex, n (%) < 0.001

Men 2950 (68.2) 325 (67.6) 731 (58.5) 53 (52)

Women 1375 (31.8) 156 (32.4) 519 (41.5) 49 (48)

Label, n (%) 0.06

Fracture 1996 (46.2) 222 (46.2) 565 (45.2) 59 (57.8)

Normal 2329 (53.8) 259 (53.8) 685 (54.8) 43 (42.2)
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it is important to note that the DL model’s comparable performance to radiologists does not lessen the need for 
critical appraisal by human practitioners, including a comprehensive review of a patient’s clinical information; 
rather, it should be seen as a complimentary diagnostic aid.

A previous study found that only 82% of nasal bone fractures can be identified on plain radiographs1. In 
this study, the DL model had a sensitivity of 83.1%, indicating an almost perfect diagnostic performance for 
this imaging modality. While CT images with thin slice thickness reconstruction are the imaging modality of 
choice for diagnosing nasal bone fractures21, conventional radiographs have advantages such as lower radiation 
exposure, fast image acquisition, and cost-effectiveness. Although conventional radiography is not the most 
accurate imaging modality for diagnosing nasal bone fractures, DL-assisted radiography would help expedite 
the diagnosis of nasal bone fractures and address resource scarcity in clinical practice. However, the definite 
diagnosis of nasal bone fractures depends on both CT and conventional radiographs owing to the inherently 
limited diagnostic capability of conventional radiographs.

The main strength of the current study is that our DL model was trained on well-balanced real-world clinical 
datasets, and that the proportion of fracture cases was almost equivalent to the normal incidence (40–50%) across 
different cohorts. This is particularly important, considering that a DL model trained on an imbalanced training 
set is more vulnerable to biases and more likely makes decisions in favor of the majority class22. Furthermore, the 

Figure 1.    HYPERLINK "sps:id::fig1||locator::gr1||MediaObject::0" Receiver operating characteristics curves of 
the deep learning algorithm in the (a) internal test set and (b) external test set with radiologists.

Table 2.   Diagnostic performance of deep learning model and radiologists. AUC​ area under the receiver 
operating characteristics curve. *P-values calculated using DeLong’s method for comparing AUCs between the 
deep learning model and the two radiologists. Numbers in parentheses indicate 95% confidence intervals.

Accuracy (%) Sensitivity (%) Specificity (%) AUC​ P-value*

Deep learning model 83.3 (75.5–90.2) 83.1 (71.2–93.2) 83.7 (69.8–93.0) 0.857 (0.782–0.931)

Radiologist 1 77.5 (69.6–84.3) 64.4 (52.5–76.3) 95.3 (88.4–100) 0.799 (0.729–0.868) 0.142

Radiologist 2 71.6 (63.7–79.4) 54.2 (42.4–67.8) 95.3 (88.4–100) 0.749 (0.676–0.819) 0.021
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diagnostic performance of our DL model was compared to that of radiologists using a geographically separate 
dataset, which increases the generalizability of our results. Additionally, we applied Grad-CAM to overlay heat-
maps onto radiographs to improve the transparency and interpretability of our DL model. In fact, the intensities 
of the heatmaps mostly focused on the nasal areas, suggesting that the model correctly recognized the nasal area 
when identifying a fracture, even in the presence of artifacts such as skin folds or metallic wires of facial masks.

There are, however, several limitations of the current study that need to be addressed. First, the sample size 
of the external test set was relatively small, which may somewhat reduce the generalizability of our DL model 
to real-world practice settings. Second, the number of reviewers was limited to two experienced radiologists. 
The potential benefit of the DL model could have been further validated if additional reviewers from different 
backgrounds, such as emergency physicians or plastic surgeons, had been included. Third, there was a significant 
difference in the proportion of sexes between training/validation and test sets. However, no significant anatomical 

Figure 2.   Example images of bilateral nasal bone radiographs overlaid with Grad-CAM heatmaps. The DL 
model and radiologists all correctly identified the nasal bone fractures. The images (a) and (b) show typical 
nasal bone fractures with fracture lines; images (c) and (d) show comminuted fractures with skin folds (c) and a 
metallic nose wire from a facial mask (d). The predicted probabilities of fractures by the DL model are shown for 
each patient.
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difference in nasal bones has been found between sexes23, and thus this difference would have not affected the 
outcome of this study. Finally, the study cohorts comprised an Asian population whose nasal bone anatomy may 
differ from that of other ethnicities. Thus, the developed DL model may not yield similar results for patients of 
different ethnicities.

In conclusion, our CNN-based DL model demonstrated excellent performance comparable to that of expe-
rienced radiologists in diagnosing nasal bone fractures on conventional radiographs. This promising finding 
could translate into DL applications that can be used as diagnostic assistance tools for patients with facial trauma.

Figure 3.   Examples of false positive images (normal nasal bone radiographs incorrectly diagnosed as fractures 
by the DL model). (a) The heatmap focuses on the angulated nasal bone in the left lateral view (right); (b) the 
heatmap focuses on nasal area narrowly separated from adjacent facial bones in the left lateral view (right); 
(c) the heatmap focuses on linear radiolucent line besides the nasal bone in the left lateral view (right); (d) the 
nasal bone is small and thin in the right lateral view (left) and faintly visible in the left lateral view (right). The 
predicted probabilities of fractures by the DL model are shown for each patient.
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Methods
The institutional review boards of Seoul St. Mary’s Hospital (KC22RISI0472) and Yeouido St. Mary’s Hospital 
(SC22RISI0102) approved this retrospective study and waived the requirement for informed consent considering 
the retrospective nature of the analyses involving only anonymized data. All methods were performed in accord-
ance with the ethical standards of our institutional research committee and with the 1964 Helsinki declaration 
and its later amendments.

Dataset.  A total of 9596 nasal radiographs from 6713 adult patients were examined for suspected nasal bone 
fractures between January 2009 and October 2020 at our institution. All nasal bone radiographs were exported 
from the institutional picture archiving and communication system in anonymized DICOM format. The data 
were exported and initially reviewed by a (blinded) 3rd-year radiology resident in training. The criteria for deter-
mining nasal bone fractures were based on surgical findings when available or clinical/radiological consensus 
obtained from electronic medical records. Nasal radiographs were examined bilaterally, and records of patients 
with only unilateral (left or right) nasal radiographs were excluded (n = 657). The remaining patients were then 
randomly divided into the training, validation, and internal test cohorts. The external test cohort consisted of 
patients who presented at a geographically separated tertiary hospital between July 2019 and December 2020 
(Fig. 4).

Image assessment by experienced radiologists.  Two fellowship-trained radiologists (both blinded, 
with 6 and 9 years of experience in head and neck diagnostic radiology, respectively) independently reviewed 
and classified the nasal radiographs as either fractures or normal bone. Both radiologists routinely interpret 
nasal bone radiographs. A fracture was diagnosed if any radiologic features of nasal bone fractures, including 
fracture lines, displacement, depression, deformity, and angulation, were present.

Image preprocessing.  Before the DL model training, all images were preprocessed in the following way. 
First, images were resized by adjusting the image ratio, with the length of the short axis set to 512 pixels. Intensity 
normalization was then performed to obtain a pixel value between 0 and 1.

Training the deep learning algorithm.  WE trained a DL model to classify the nasal radiographs. Two 
lateral views from each patient were used as the model input, and the presence of a nasal fracture was deter-
mined via binary classification. First, to simultaneously utilize the features of both views, the imaging features 
were independently extracted from each view using the backbone of EfficientNet-B7 model24. The parameters 
of the backbone were initialized by loading an ImageNet pretrained model. The input image size of each CNN 
model was 448 × 448 pixels, and 2560 imaging features were extracted. Then, binary classification was performed 
with a multilayer perceptron model using the concatenated 5120 features extracted from the two CNN model 
paths as inputs. The multilayer perceptron model consists of three hidden layers to reduce the number of hid-
den units by half for each hidden layer. To reduce overfitting of the training data, various random transforma-
tions, including random flipping, rotation, affine transforms, intensity inverting, addition of random noises, 
and random cropping were applied during the model training. Cross-entropy was used as a cost function, and 
the model parameters were updated using the AdamW algorithm25 with a learning rate of 0.0001 and a weight 
decay coefficient of 0.001. A cut-off value of 0.5 was used in the cross-entropy loss function such that the param-
eters were updated based on whether the prediction reached the cut-off value. For each epoch, the AUC for the 
validation set was calculated and the parameters in the epoch with the best AUC result (the 140th epoch out of 
the total of 256 epochs in our training process) were selected. After the training process was completed, in the 
inference of the test set, the probability of an image containing a nasal fracture was determined by averaging the 
two results, with the order of the two views changed. To identify the key regions that contributed to the model’s 
decision, Gradient-weighted Class Activation Mapping (Grad-CAM) was applied at the last convolutional layer 
of the CNN model for each view. We reviewed the Grad-CAM results of the external dataset to observe whether 

Figure 4.   A flowchart of patient selection process.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21510  | https://doi.org/10.1038/s41598-022-26161-7

www.nature.com/scientificreports/

Grad-CAM properly emphasized the nasal bone area. The overall DL model architecture used in this study is 
summarized in Fig. 5, and more details and the codes of the model were uploaded to the Github repository 
(https://​github.​com/​hufsa​im/​nasal​bone).

Statistical analysis.  Continuous and categorical variables were compared among the training, validation, 
and internal/external test cohorts using one-way ANOVA and Pearson’s Chi-squared test, respectively. Cohen’s 
κ was calculated to assess the inter-rater agreement between the DL model and the two radiologists. The level of 
agreement was determined as none to slight if κ was 0.01–0.20; fair at κ = 0.21–0.40; moderate at 0.41–0.60; sub-
stantial at 0.61–0.80; and almost perfect at 0.81–1.0026. To evaluate the diagnostic performance of the DL model, 
the AUC was calculated for both the internal and the external test set. The optimal threshold for the ROC curve 
was determined using the Youden index. The AUCs of the DL model and the radiologists were compared using 
the DeLong method27. Confidence intervals for sensitivities, specificities, and accuracies were derived from 2000 
bootstrap replicates using the “pROC” R package. All statistical analyses were performed using R statistical soft-
ware (v. 4.1.2, Vienna, Austria) and Stata (v. 16.1, College Station, TX, USA). A two-sided P-value of less than 
0.05 was considered statistically significant.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Figure 5.   A workflow of training deep learning algorithm.

https://github.com/hufsaim/nasalbone
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