Table 3 Result of the R\(^2\), MAE and MSE metrics applied to the forecast results for the analyzed models.

From: A machine learning approach to analyse ozone concentration in metropolitan area of Lima, Peru

Station/model

R\(^2\)

MAE

MSE

ATE station

LR

0.9923

0.0724

0.0058

SVM

0.9913

0.0643

0.0065

DT

0.9478

0.1648

0.0392

RF

0.8753

0.2373

0.0937

MLP

0.906

0.2481

0.0706

CDM station

LR

0.9892

0.0486

0.0036

SVM

0.9844

0.0702

0.0052

DT

0.873

0.1915

0.0424

RF

0.7576

0.2286

0.0809

MLP

0.9246

0.1352

0.0251

SB station

LR

0.9849

0.0847

0.0087

SVM

0.9814

0.0923

0.0107

DT

0.8728

0.199

0.0729

RF

0.9699

0.096

0.0172

MLP

0.419

0.5149

0.3332

STA station

LR

0.9909

0.0758

0.006

SVM

0.9933

0.0501

0.0044

DT

0.8349

0.2497

0.1081

RF

0.8203

0.2842

0.1176

MLP

0.9452

0.1783

0.0359

  1. The results are separated by station (ATE, CDM, SB and STA).