
1

Vol.:(0123456789)

Scientific Reports |           (2023) 13:13  | https://doi.org/10.1038/s41598-022-27264-x

www.nature.com/scientificreports

A comparison of machine learning 
algorithms and traditional 
regression‑based statistical 
modeling for predicting 
hypertension incidence 
in a Canadian population
Mohammad Ziaul Islam Chowdhury 1,2,3*, Alexander A. Leung 1,4, Robin L. Walker 1,5, 
Khokan C. Sikdar 6, Maeve O’Beirne 2, Hude Quan 1 & Tanvir C. Turin 1,2

Risk prediction models are frequently used to identify individuals at risk of developing hypertension. 
This study evaluates different machine learning algorithms and compares their predictive performance 
with the conventional Cox proportional hazards (PH) model to predict hypertension incidence using 
survival data. This study analyzed 18,322 participants on 24 candidate features from the large 
Alberta’s Tomorrow Project (ATP) to develop different prediction models. To select the top features, 
we applied five feature selection methods, including two filter-based: a univariate Cox p-value and 
C-index; two embedded-based: random survival forest and least absolute shrinkage and selection 
operator (Lasso); and one constraint-based: the statistically equivalent signature (SES). Five machine 
learning algorithms were developed to predict hypertension incidence: penalized regression Ridge, 
Lasso, Elastic Net (EN), random survival forest (RSF), and gradient boosting (GB), along with the 
conventional Cox PH model. The predictive performance of the models was assessed using C-index. 
The performance of machine learning algorithms was observed, similar to the conventional Cox 
PH model. Average C-indexes were 0.78, 0.78, 0.78, 0.76, 0.76, and 0.77 for Ridge, Lasso, EN, RSF, 
GB and Cox PH, respectively. Important features associated with each model were also presented. 
Our study findings demonstrate little predictive performance difference between machine learning 
algorithms and the conventional Cox PH regression model in predicting hypertension incidence. In 
a moderate dataset with a reasonable number of features, conventional regression-based models 
perform similar to machine learning algorithms with good predictive accuracy.

Hypertension has long been documented as a substantial health burden that affects all population segments. 
Globally, hypertension causes 8.5 million of deaths every year and 7% of disease burden, making it one of the 
most significant risk factors for global mortality and disease burden1–3. Individuals with hypertension are at 
higher risk of developing life-changing and possibly life-threatening conditions4. One of the priorities of health 
and clinical research is to identify people at higher risk of developing an adverse health outcome, such as hyper-
tension, so that they can be targeted for early preventative strategies and treatment5. Individuals at increased risk 
of developing hypertension could be recommended to change their lifestyle and behaviors (e.g., physical activity, 

OPEN

1Department of Community Health Sciences, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, 
Canada. 2Department of Family Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, 
Canada. 3Present address: Department of Psychiatry, University of Calgary, 3280 Hospital Drive NW, Calgary, 
AB T2N 4Z6, Canada. 4Department of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 
4Z6, Canada. 5Primary Health Care Integration Network, Primary Health Care, Alberta Health Services, Calgary, 
AB, Canada. 6Health Status Assessment, Surveillance and Reporting, Public Health Surveillance and Infrastructure, 
Provincial Population and Public Health, Alberta Health Services, 10101 Southport Rd. SW, Calgary, AB T2W 3N2, 
Canada. *email: mohammad.chowdhury@ucalgary.ca

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-27264-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |           (2023) 13:13  | https://doi.org/10.1038/s41598-022-27264-x

www.nature.com/scientificreports/

dietary pattern, alcohol consumption, smoking, etc.) to reduce their risk. Prediction modeling can play a vital 
role in identifying high-risk individuals by estimating their risk of developing hypertension utilizing different 
underlying demographic and clinical characteristics called risk factors that are associated with hypertension6–8.

Various models have been developed that mathematically combine multiple risk factors to estimate the risk of 
hypertension in asymptomatic subjects in the population9. The regression-based methodologies, such as logistic 
regression and Cox regression, are the conventional approach for developing prediction models10,11. Machine 
learning algorithms recently emerged as a popular modeling approach that offers an alternative class of models 
with more computational flexibility12. Over the last few years, machine learning algorithms achieved significant 
success across a broad range of fields due to their superiority, such as their ability to model nonlinear relations 
and the accuracy of their overall predictions13. Nevertheless, the vast majority of existing hypertension risk pre-
diction models are conventional regression-based models14–23. Machine learning-based models also exist in the 
hypertension prediction domain24–35. Machine learning algorithms sometimes struggle with reliable probabilistic 
estimation and interpretability36,37. Moreover, in clinical applications, machine learning algorithms often produce 
mixed results in predictive performance compared with conventional regression models38–42.

Data were primarily cross-sectional among the models where machine learning algorithms were used to 
predict hypertension9. Diagnostic models were built without considering or utilizing survival information where 
time is inherent in model building. Due to the lack of survival data utilization in predicting hypertension in 
the machine learning domain9, it is unclear how machine learning-based models will predict hypertension in 
survival data. A formal comparison in predictive performance between conventional regression-based hyper-
tension prediction models and machine learning-based models in a survival setting is also absent9. There is also 
a scarcity of comparisons using the same dataset. This study investigated and compared five machine learning 
algorithms’ predictive performance with the conventional Cox PH regression model to predict the risk of devel-
oping hypertension in a survival setting.

Methods
Study population.  This study used Alberta’s Tomorrow Project (ATP) cohort data, which is Alberta’s larg-
est longitudinal population health cohort from the general population aged 35–69 years. ATP contains baseline 
and longitudinal information on socio-demographic characteristics, personal and family history of the disease, 
medication use, lifestyle and health behavior, environmental exposures, and physical measures. ATP has several 
questionnaires, and this study used data from 25,359 participants who completed the CORE questionnaire. A 
more detailed description of ATP data is provided in Supplementary Material (Appendix 1). In this study, eligi-
ble subjects were free of hypertension at baseline and consented to have their data linked with Alberta’s admin-
istrative health data (hospital discharge abstract data and physician claims data). Linking with administrative 
health data was completed to provide more comprehensive follow-up information on participants, necessary to 
determine hypertension incidence. We excluded 6,996 participants from the analysis who had hypertension at 
baseline and did not meet eligibility criteria. We also excluded 41 participants who responded to hypertension 
status questions at baseline as “don’t know” or “missing”. Eighteen thousand three hundred twenty-two partici-
pants remained after exclusion and were finally included in the analysis.

Data pre‑processing.  To prepare the data for the machine learning algorithms, data pre-processing was 
performed. We began by evaluating the data’s quality and consistency. Because our data originated from a single 
main source (ATP), we did not have any data quality issues such as mismatched data types (e.g., total family 
income in multiple currencies) or mixed data values (e.g., man vs. male). We examined the data for probable 
outliers. Our dataset had missing values on several candidate features ranging from 0 to 26%. As part of the 
data cleaning, missing values in the data set were imputed using multiple imputation by chained equations43,44. 
Multiple imputation, which entails making multiple predictions for each missing value, provides advantages 
over other approaches to missing data because analyses of multiply imputed data account for the uncertainty 
in the imputations and produce accurate standard errors43,44. One of the most prominent multiple imputation 
approaches is multiple imputation by chained equations (MICE), which is a realistic approach to constructing 
imputed datasets based on a collection of imputation models, one model for each variable with missing values. 
Since MICE uses a separate imputation model for each variable, it can accommodate a wide variety of variable 
types (for example, continuous, binary, unordered categorical, ordered categorical) and is therefore very flexible 
and can be used in a broad range of settings. Information on missing values for different candidate features is 
presented in the supplementary table (Table S1).

We used one-hot encoding, a standard strategy for dealing with categorical data in machine learning, in 
which a new binary feature is formed for each level of each category feature. When necessary, some of the 
categories of a categorical feature were merged or aggregated as part of data transformation to construct a new 
category of that categorical feature. The feature "ethnicity," for example, contains six subcategories: Aboriginal, 
Asian, White, Latin American Hispanic, Black, and other. The category "Asian" was developed by combining 
the categories South Asian, East Asian, Southeast Asian, Filipino, West Asian, and Arab. In addition, the levels 
of certain of the categorical features were occasionally combined to form a single binary feature indicating the 
presence or absence of the condition. For example, the feature "cardiovascular disease" was categorized as "yes" 
if any stroke, myocardial infarction, angina, arrhythmia, coronary heart disease, coronary artery disease, heart 
disease, or heart failure was present and as "no" if it was absent. For continuous features, we did not apply fea-
ture scaling techniques such as standardization or normalization in this study. Continuous features also remain 
continuous in the analysis.
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Selection of candidate features.  We compiled a list of available potential candidate features before 
launching the analysis. We determined the possible candidate features for model development based on a lit-
erature search9, features used in the past45, and discussion with content experts. We initially considered 24 can-
didate features for the model development process. Given our model’s intended clinical application, we did not 
consider any genetic risk factors/biomarkers as potential candidate features.

Definition of outcome and features.  The outcome of incident hypertension was determined through 
linked administrative health data using a coding algorithm. We used the relevant International Classification of 
Disease (ICD) 9th and 10th Version codes (ICD-9-CM codes: 401.x, 402.x, 403.x, 404.x, and 405.x; ICD-10-CA/
CCI codes: I10.x, I11.x, I12.x, I13.x, and I15.x) and a validated hypertension case definition (two physician 
claims within two years or one hospital discharge for hypertension) to define hypertension incidence46.

The age of the study participants, body mass index (BMI), waist-hip ratio, diastolic blood pressure (DBP), sys-
tolic blood pressure (SBP), total physical activity time (total MET minutes/week), and total sitting time (the sum 
of the sitting times on weekdays and weekends) were all considered as continuous features. The remaining fea-
tures were categorical. A detailed description of the features is provided in Supplementary Material (Appendix 2).

Feature selection.  Feature selection is a process where a subset of relevant features from a large amount of 
data is selected to filter the dataset down to the smallest possible subset of accurate features. It is imperative to 
identify the relevant features from a dataset and remove less significant features that contribute to the outcome 
to achieve better prediction model accuracy10. Feature selection methods can be classified into three categories: 
filter, wrapper, and embedded methods47. This study used two popular variants of filter methods in the survival 
analysis setting: a univariate Cox p-value and C-index48, two popular embedded methods of feature selection: 
RSF and Lasso, and a constraint-based method for feature selection: statistically equivalent signature (SES)49. 
More detail on these feature selection methods is provided in Supplementary Material (Appendix 3).

Machine learning models.  Modeling survival analysis (time-to-event data) requires specialized methods 
to handle unique challenges such as censoring, truncation, time-varying features, and effects. Censoring, where 
the event of interest is not observed due to time constraints or lost to follow-up during the study period, is 
challenging, and survival analysis provides different mechanisms to deal with such problems. Several machine 
learning algorithms have been developed and adapted to work with survival analysis data, effectively addressing 
complex challenges associated with survival data.

This study developed five well-known and popular machine learning algorithms, namely RSF, boosted gradi-
ent, penalized Lasso, penalized Ridge, and penalized EN. The machine learning algorithms chosen fall into three 
categories: penalized Cox regression (Lasso, ridge, and EN); boosted Cox regression (Cox model with gradient 
boosting); and random forests (RSF). A brief description of these models is provided in Supplementary Material 
(Appendix 4). The Cox PH model was included here as a conventional regression-based model (baseline) against 
which we compared the machine learning-based models.

Feature importance.  Feature importance is a tool that refers to a class of techniques for assigning scores 
to input features according to their usefulness in predicting a target feature. The relative scores can indicate 
which features are most relevant to the target and which are not. Feature importance helps interpret and explain 
machine learning algorithms by illustrating the predictive power of the dataset’s features. The goal of using 
feature importance in this study was to learn what features are important to different models so that we could 
interpret and discuss the model with others. Often, machine learning algorithms merely provide predictions and 
do not explain what elements contribute to their predictions or how their weights are calculated. This provides 
an interpretability challenge for machine learning algorithms, especially in clinical research, because readers are 
constantly interested in knowing the features that contribute to the prediction of a condition such as hyperten-
sion. Because machine learning techniques are hard to understand, we chose to show the importance of features 
in our work so that people could see which features helped predict hypertension.

There are a variety of methods for calculating the importance of a feature, and different modeling method-
ologies employ distinct methods for calculating feature importance metrics. The function for computing the 
importance of features in RSF, GB, and Cox PH models is based on Breiman’s permutation method50, where each 
feature is randomly permuted at a time, and the associated reduction in predictive performance is calculated. For 
the penalized models, the standardized regression coefficients’ magnitude was used to rank order the features 
according to their importance51. To ensure comparable rank-ordering across all models, the importance metrics’ 
absolute values for all the features were scaled to unit norm52.

Statistical analysis.  We first imputed the missing values. We then randomly split subjects into two sets: 
the training set, which included 67% (two-thirds) of the sample (n = 12,233), and the testing set, which included 
the remaining 33% (one-third) (n = 6,089). The two groups’ baseline characteristics were compared using the 
unpaired t-test or the χ2-test, as appropriate. We developed risk prediction models from the training data and 
assessed the models’ performance using the testing data. Five feature selection methods were employed to derive 
the most accurate risk prediction model for all the machine learning and conventional regression models. Fea-
tures were first ranked according to their importance/scores/p values. Based on the features’ ranking, the top 20 
features by each of the methods were selected. Due to the variations in the selected top 20 features by different 
methods, features that are common in all the methods are finally considered in model building.

Five machine learning algorithms and the conventional Cox PH model were developed in the training set. 
Machine learning algorithms have hyper-parameters that need to be selected to optimize model performance. 
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We carried on tuning these hyper-parameters automatically within a tenfold nested cross-validation loop. Hyper-
parameter values were chosen by applying 20 random iterations in the inner loop, and model performance was 
assessed in the outer loop. This ensured the repetition of model selection steps for each training and test data 
pair. The number of random variables for splitting and the minimal number of events in the terminal nodes were 
tuned when building the RSF. We fitted a Cox PH model as a base learner for GB models. The number of boost-
ing iterations and the regression coefficients were tuned in GB. Parameter lambda was tuned for the penalized 
models, and the best value was chosen based on tenfold cross-validation. The models’ predictive performance was 
evaluated using the concordance index (C-index)53, which measures the proportion of pairs in which observation 
with higher survival time has a higher probability of survival as predicted by the model. The whole process was 
iterated ten times by sampling the original data with replacement.

Moreover, the training data features were ranked according to their relative contribution to predicting hyper-
tension incidence using various feature importance metrics. Graphical illustration of the workflow used for this 
study is presented in Fig. 1. The analyses were conducted using several packages51,54–60 of R software v 3.6.2. On 
reasonable request, the corresponding author may release the code for the analysis used in the current study.

Ethics approval.  The Conjoint Health Research Ethics Board (CHREB) at the University of Calgary granted 
ethical approval for this study (REB18-0162_REN2), and all methods were performed in accordance with the 
relevant guidelines and regulations. Informed consent was waived by the CHREB because the dataset used in 
this study consisted of de-identified secondary data released for research purposes.

Consent to participate.  The manuscript is based on the analysis of secondary de-identified data. Patients 
and the public were not involved in the development, design, conduct or reporting of the study.

Results
We presented the baseline characteristics of the study participants in Table 1 and Supplementary Table S2. In 
Table 1, the study participants’ characteristics are compared according to the status of developing hypertension, 
while in Supplementary Table S2, characteristics are compared between training data and test data. During the 
median 5.8-year follow-up, 625 (3.41%) participants newly developed hypertension. In Table 1, most of the study 
characteristics were significantly different (p < 0.05) between those who developed hypertension and those who 

Data Collection � Baseline data from Alberta’s Tomorrow Project (ATP) cohort

� Outcome hypertension incidence from linked administrative health data

Selection of Features � A list of prospective candidate features was compiled

� Five feature selection methods applied: A univariate Cox p-value, C-index; random 

survival forest, lasso, the statistically equivalent signature (SES)

Model Development � Five machine learning algorithms: Random survival forest (RSF), gradient boosting 

(GB), penalized Lasso, penalized Ridge, and penalized elastic net (EN)

� One conventional regression-based model: Cox proportional hazards (PH)

Model Evaluation

Data Preprocessing � Missing values imputed 

� One-hot encoding strategy for dealing with categorical data

� Continuous features remained continuous in its original form

Data Splitting � Data are randomly divided into two sets: a training set for developing models, and a 

testing set for evaluating such models

� Two-thirds of the data for model development and one-third for model evaluation

� C-index to compare predictive performance of the models

� Feature importance to identify the most relevant features for the model

Figure 1.   Graphical illustration of the workflow used for this study.
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did not. These include age, sex, body mass index (BMI), waist-hip ratio (WHR), diastolic blood pressure (DBP), 
systolic blood pressure (SBP), total household income, highest education level completed, diabetes, cardiovascular 
disease, smoking status, working status, total sleep time, total sitting time, vegetable and fruit consumption, and 
job schedule. However, some study characteristics were not significantly different (p < 0.05), including marital 
status, residence, ethnicity, depression, family history of hypertension, alcohol consumption, total physical activ-
ity time, and physical activity. Overall, the study participants’ mean age was 50.99 years, and there were more 
females (n = 12,559, 68.55%) than males (n = 5,763, 31.45%). In Supplementary Table S2, no significant difference 
(p < 0.05) in study characteristics was observed between training and test data.

Table 2 presents feature rankings of all 24 candidate features, and Table 3 shows the top 20 features based on 
five different methods. Due to different methods’ differences in the ranking, the top 20 selected features are not 
the same. We chose features common in the top 20 selected by different methods to avoid less relevant features in 
the model building process. Fourteen features were identified as common in all top 20 features and were included 
in the final model building process (Table 3, bold text). These included SBP, DBP, BMI, waist-hip ratio, diabetes, 
cardiovascular disease, age, job schedule, working status, total household income, residence, highest education 
level completed, family history of hypertension, and sex.

Figure 2 describes the relative importance of features concerning the prediction of hypertension incidence 
by six different model-building approaches. The waist-hip ratio was selected as the top feature by Ridge regres-
sion and GB. In contrast, cardiovascular disease was selected as the top feature by Lasso regression and EN 
regression. SBP was selected as the top feature by the Cox PH model and RSF. The waist-hip ratio, cardiovas-
cular disease, diabetes, SBP, age, and BMI have been deemed the most important features considered by most 
modeling approaches. However, there are also variations in the rank ordering of important features across the 
investigated models.

Figure 3 describes the predictive accuracy of different models. There were negligible differences in the accu-
racy of machine learning and conventional regression-based Cox models. The average C-index for the machine 
learning algorithms Ridge, Lasso, EN, RSF, and GB was 0.78, 0.78, 0.78, 0.76, and 0.76, respectively. In compari-
son, the conventional regression-based Cox PH model’s average C-index was 0.77. Nevertheless, when penalized 
techniques were used, the models were a little better at making predictions.

Discussion
This study examined the predictive accuracy of machine learning algorithms and compared their performance 
with the conventional regression-based Cox PH model to predict hypertension incidence. The predictive accuracy 
of the machine learning algorithms and the Cox PH model was good61, as the C-index was well over 0.70 in every 
case. Our findings suggest that the machine learning algorithm’s predictive accuracy is similar to the regression-
based Cox PH model. These findings are consistent with our recent systematic review and meta-analysis, where 
no evidence of machine learning algorithms’ superior predictive performance over conventional regression-based 
models was observed9. According to our recent meta-analysis9, which is a pooled analysis of the papers included 
in our systematic review of hypertension risk prediction models, the overall pooled C-statistic of the machine 
learning-based algorithms was 0.76 [0.71–0.80], compared with an overall pooled C-statistic of 0.75 [0.73–0.77] 
in the traditional regression-based models. This information is presented in two forest plots (Supplementary 
Figures S1 and S2), the most popular way of graphically representing meta-analysis results62. The pooled effect 
size (C-statistic) and individual effect sizes (C-statistics) from each included study that predicted hypertension 
were graphically displayed in the forest plot.

In the past, several machine learning algorithms were developed for predicting hypertension24–35. Most of 
those algorithms used cross-sectional data and did not predict hypertension incidence. Some of the models 
used longitudinal data but did not incorporate time into their model. Only two models predicted the incidence 
of hypertension, considering survival data using machine learning algorithms29,63. Ye et al.29 used XGBoost, 
and Völzke et al.63 used the Bayesian network to build their model for predicting incident hypertension. How-
ever, neither study compared their model performance with conventional regression-based models. There have 
been only two studies27,35 where both conventional regression-based and machine learning-based models were 
developed simultaneously. Huang et al.27 and Farran et al.35 both created machine learning algorithms along 
with a conventional logistic regression model. Huang et al.27 used AUC to assess their models’ performance and 
found the artificial neural network’s AUC (0.90 ± 0.01) much higher than the logistic regression model’s AUC 
(0.73 ± 0.03). Farran et al.35 used classification accuracy to assess their models’ performance and found logistic 
regression had relatively similar accuracy (82.4) to other machine learning algorithms (82.4 ± 0.6 for support 
vector machines, 80.0 ± 0.8 for the k-Nearest neighbors, and 80.9 for multifactor dimensionality reduction). 
Nevertheless, none of the studies considered survival data in their modeling.

We employed feature selection methods before model building, and five different methods selected the top 
20 features although feature space was not high-dimensional in our study, and penalized algorithms are already 
equipped to deal with high-dimensional data. However, having access to the entire set of features during model 
building has the disadvantage of sometimes including very irrelevant features in the final selected model because 
different machine learning techniques use different mechanisms for feature selection during their model build-
ing process. We intended to exclude very unimportant features from the model-building process. We noticed 
considerable variations in the top 20 features, as a result, we used a strategy in which higher-ranked features, 
which are common in all feature selection approaches, were allowed to be considered in the model-building 
process. By doing so, we ensured that the most irrelevant features were not examined by any of the feature selec-
tion procedures and that the most extreme irrelevant features were not included in the final model. We believe 
selecting common features made our model robust. Yet after employing feature selection methods, we discovered 
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Variable Categories All participants (18,322)
Participants who developed 
hypertension (n = 625)

Participants who did not 
develop hypertension 
(n = 17,697) P value

Socio-demographic characteristics of groups

Age, years, mean (SE) 50.99 (0.07) 53.99 (0.35) 50.88 (0.07) < 0.001

Sex, n (%)
Male (reference) 5763 (31.45) 250 (40) 5513 (31.15) < 0.001

Female 12,559 (68.55) 375 (60) 12,184 (68.85)

Body mass index, kg/m2, mean 
(SE) 26.45 (0.04) 28.63 (0.21) 26.38 (0.04) < 0.001

Waist hip ratio, mean (SE) 0.9093 (0.0006) 0.9363 (0.0033) 0.9085 (0.0006) < 0.001

Diastolic blood pressure, mean 
(SE) 72.96 (0.08) 78.43 (0.47) 72.78 (0.08) < 0.001

Systolic blood pressure, mean (SE) 119.71 (0.11) 132.36 (0.67) 119.40 (0.12) < 0.001

Marital status, n (%)

Married and/or living with a 
partner (reference) 14,457 (78.91) 488 (78.08) 13,969 (78.94)

0.146Single, never married 1180 (6.44) 32 (5.12) 1148 (6.49)

Other (divorced, widowed, 
separated) 2685 (14.65) 105 (16.8) 2580 (14.57)

Residence, n (%)
Urban (reference) 15,272 (83.35) 428 (68.48) 14,844 (83.88)

0.146
Rural 3050 (16.65) 197 (31.52) 2853 (16.12)

Total Household Income, n (%)

 < $49,999 (reference) 2800 (15.28) 178 (28.56) 2627 (14.84)

< 0.001
$50,000–$99,999 5912 (32.27) 229 (36.68) 5690 (32.15)

$100,000–$199,999 7174 (39.16) 177 (28.27) 6986 (39.48)

 ≥ $200,000 2436 (13.29) 41 (6.49) 2394 (13.52)

Highest education level com-
pleted, n (%)

High school or below (none, 
elementary school, high school, 
trade, technical or vocational 
school, apprenticeship training or 
technical CEGEP) (reference)

6164 (33.64) 309 (49.35) 5854 (33.08)

< 0.001
Diploma but below bachelor’s 
degree (diploma from a com-
munity college, pre-university 
CEGEP or non-university certifi-
cate, university certificate below 
bachelor’s level)

4926 (26.89) 163 (26.15) 4764 (26.92)

Bachelor’s degree or above (bach-
elor’s degree, graduate degree 
(MSc, MBA, MD, PhD, etc.))

7232 (39.47) 153 (24.49) 7079 (40.0)

Ethnicity, n (%)

Aboriginal 68 (0.37) 1 (0.16) 67 (0.38)

0.349

Asian (South Asian, East Asian, 
Southeast Asian, Filipino, West 
Asian, Arab)

827 (4.51) 21 (3.4) 806 (4.55)

White (reference) 16,894 (92.21) 588 (94.03) 16,307 (92.14)

Latin American Hispanic 162 (0.89) 2 (0.32) 160 (0.9)

Black 97 (0.53) 2 (0.33) 95 (0.54)

Other (Jewish and others) 273 (1.49) 11 (1.76) 262 (1.48)

Diabetes, n (%) 735 (4.01) 58 (9.28) 677 (3.83)  < 0.001

Cardiovascular Disease, n (%) 377 (2.06) 40 (6.4) 337 (1.9)  < 0.001

Depression, n (%) 2011 (10.98) 79 (12.64) 1932 (10.92) 0.179

Family history of hypertension, 
n (%) 10,946 (59.74) 396 (63.36) 10,550 (59.61) 0.061

Smoking Status, n (%)

Never (reference) 10,107 (55.16) 290 (46.37) 9823 (55.51)

 < 0.001Former 6773 (36.97) 276 (44.15) 6491 (36.68)

Current 1442 (7.87) 59 (9.48) 1383 (7.81)

Alcohol consumption, n (%)

Never (reference) 1279 (6.98) 56 (8.97) 1224 (6.92)

0.189

 ≤ 1 time a week 9642 (52.63) 341 (54.52) 9307 (52.59)

2 to 3 times a week 3820 (20.85) 123 (19.77) 3689 (20.85)

4 to 5 times a week 1988 (10.85) 55 (8.74) 1938 (10.95)

 ≥ 6 times a week 1593 (8.69) 50 (8.0) 1539 (8.69)

Working status, n (%)

Full time (reference) 11,449 (62.49) 352 (56.29) 11,057 (62.48)

 < 0.001

Part time 4596 (25.09) 182 (29.19) 4422 (24.99)

Other (looking after home, 
disable/sick, student, unpaid/
voluntary)

1857 (10.13) 83 (13.23) 1803 (10.18)

Unemployed 420 (2.29) 8 (1.28) 415 (2.35)

Continued
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that different models assigned varying degrees of importance to various features. For example, feature CVD was 
given a high priority in penalized models but a low priority in gradient boosting (Fig. 2).

The relative importance of the features in predicting hypertension incidence revealed that waist-hip ratio, 
cardiovascular disease, diabetes, SBP, age, and BMI are the essential features. There are apparent discrepancies in 
a feature’s importance by different methods. DBP was identified as an important feature by RSF and GB. However, 
negligible importance was assigned to it in the penalized models. Perhaps this is due to its high collinearity with 
SBP, and penalized models tend to eliminate correlated features. Cardiovascular disease and diabetes were the 
two critical features identified in our study for predicting hypertension incidence, often avoided by most studies. 
This is because participants with cardiovascular disease and diabetes are often excluded from the model-building 
process in those studies.

Whether it is fair to compare multiple algorithms in the computational sciences and draw conclusions based 
on that comparison, and if so, under what situations and conditions this comparison should be undertaken and 
how it should be implemented, is the subject of some debate. Most commonly, studies are focused on the develop-
ment of new methods and regularly contrast the new method with current methods, which may be heavily biased 
in favor of the new approach and should not be recognized as comparison studies since they are not neutral64,65. 
Neutral comparison studies that are devoted to the comparison itself do not seek to demonstrate the superiority 
of a certain method and may therefore be regarded as unbiased64,65. Such neutral comparative studies are cru-
cial for the objective evaluation of existing methods, and their conduct is widely recommended64,65. However, 
they are conducted less frequently since many journals and journal editors view them as less attractive and less 
informative64,65. Although no precise criteria exist for how these comparative studies should be conducted, which 
competing approaches should be examined, or how they should be reported, Boulesteix et al.65 established three 
plausible requirements for a comparison study to meet in order to be considered neutral, as well as explaining 
general thoughts on the various components of a neutral comparison study. The requirements they establish 
are as follows: the primary objective of the study should be comparison itself; the authors should be reasonably 
neutral; and the assessment criteria, methodologies, and data sets selected should be rational. According to 
these three criteria, the execution of this comparison study was fair in the sense that the main objective of our 
study was comparison, and the authors were also sufficiently neutral. We also fared well in the third criterion, 
which comprises the selection of evaluation criteria, methods, and datasets. We used the C-index, a neutral and 
objective simple criterion, to evaluate our algorithms. Although the approaches were chosen subjectively, they 
were driven by objective factors such as the popularity of the models in practice and the findings accessible in 
the literature. In terms of data set selection, we attempted to select data (ATP) that is typical of the topic of our 

Table 1.   Baseline characteristics of study participants according to the status of developing hypertension or 
not.

Variable Categories All participants (18,322)
Participants who developed 
hypertension (n = 625)

Participants who did not 
develop hypertension 
(n = 17,697) P value

Total sleep time, n (%)

 ≤ 5 h (short sleep duration) 1192 (6.51) 47 (7.49) 1147 (6.48)

 < 0.001

6 h 3732 (20.37) 127 (20.33) 3604 (20.37)

7 h (reference) 7048 (38.46) 200 (32.02) 6847 (38.69)

8 h 5115 (27.92) 185 (29.66) 4929 (27.85)

 ≥ 9 h (long sleep duration) 1235 (6.74) 66 (10.49) 1170 (6.61)

Total physical activity time, mean 
(SE) 3159.83 (21.43) 3183.97 (126.52) 3157.58 (21.68) 0.825

Total sitting time, mean (SE) 2488.53 (8.92) 2389.16 (49.14) 2490.98 (9.38) 0.043

Physical activity, n (%)

Low (first quartile of physical 
activity time and fourth quartile 
of sitting time) (reference)

1685 (9.19) 59 (9.47) 1678 (9.48)

0.707
Moderate (second and third 
quartile of physical activity time 
and sitting time)

14,478 (79.02) 488 (78.12) 13,957 (78.87)

High (fourth quartile of physical 
activity and first quartile of sitting 
time)

2159 (11.78) 78 (12.40) 2062 (11.65)

Vegetable and fruit consumption, 
n (%)

Low consumption (less than 5 
servings of vegetable and fruit) 
(reference)

15,264 (83.31) 544 (87.05) 14,721 (83.18)

0.024
Moderate consumption (less than 
5 servings of vegetables but more 
than 5 servings of fruit OR more 
than 5 servings of vegetables but 
less than 5 servings of fruits)

2536 (13.84) 68 (10.84) 2469 (13.95)

High consumption (5 or more 
servings of vegetable and fruit) 522 (2.85) 13 (2.11) 507(2.87)

Job schedule, n (%)

Regular daytime shift (reference) 12,866 (70.22) 385 (61.59) 12,452 (70.36)

 < 0.001Other (evening shift, night shift, 
rotating shift, split shift, irregular 
shift, or on call)

5456 (29.78) 240 (38.41) 5245 (29.64)
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interest (the Canadian population). However, we used only one dataset for our comparative analysis, which may 
affect the findings’ generalizability, and this is a potential weakness of this study.

This study’s unique strength is comparing machine learning algorithms with the conventional regression-
based Cox model to predict hypertension incidence using survival data. To the best of our knowledge, this is 
the first time a comparison between machine learning algorithms and conventional regression models has been 
performed to predict hypertension incidence in survival data. Using large cohort data and considering many 
features is also a significant strength of this study. Notwithstanding the strengths, this study also has some 
limitations. Our study’s incidence rate of hypertension was relatively low compared to what is reported for the 
general Alberta population66. There can be several potential reasons for that. The characteristics of the study 
participants in ATP may be different from the general Alberta population. For example, female participation 
in ATP data was more than double the male participation (69% vs. 31%), and the hypertension incidence rate 
in Alberta was much lower in females than the males in study age groups66. A potential selection bias also may 
lead to a lower incidence rate of hypertension in our study. A selection bias is an error associated with recruiting 
study participants or factors affecting the study participation and usually occurs when selecting participants is 
not random67. The participants in ATP were mainly selected using the volunteer sampling method68. Those who 
decided to join the study (i.e., who self-select into the survey) may have a different characteristic (e.g., healthier) 
than the non-participants. Due to the longitudinal nature of the study, there can also be a loss of study partici-
pants during follow-up. Participants lost to follow-up (e.g., due to emigration out of the province) may be more 
likely to develop hypertension. Our study ascertained outcome hypertension from linked administrative health 
data (the hospital discharge abstract or physician claims data source) due to a lack of follow-up information in 
ATP. There is a possibility that the outcome ascertainment was incomplete. After cohort enrollment, people who 
did not have a healthcare encounter (e.g., did not visit a family physician/general practitioner or were not admit-
ted to the hospital during the study period) were missed. Also, people may have seen their family doctor for a 
reason not primarily related to BP (e.g., they went to the family doctor for an upper respiratory tract infection) 
and consequently their BP may not recorded. All these can potentially lead to a lower hypertension incidence. 
We only compared C-index to evaluate the models’ predictive performance. We basically intended to assess 
the predictive performance of various algorithms using a generally recognized standard metric. Given this, the 
C-index was the obvious choice as C-index is the most commonly used predictive measure. We would prefer 
to compare the predictive performances of all algorithms using a standard calibration metric as well (e.g., Brier 
score). However, a common calibration metric under all the settings studied in this study was not available, either 

Table 2.   Feature’s ranked based on five different approaches.

Feature

Ranking based on random 
survival forest relative 
importance

Ranking based on 
statistical equivalent 
signature

Ranking based on Harrel’s 
C-index/Somers’ Dxy rank 
correlation

Ranking based on Lasso 
Cox coefficients/variable 
importance

Ranking based on 
univariate Cox p values

Systolic blood pressure 1 1 1 13 1

Diastolic blood pressure 2 20 2 15 5

Body mass index 3 2 3 11 3

Waist-hip ratio 4 11 5 1 4

Diabetes 5 5 14 3 10

Cardiovascular disease 6 3 16 2 9

Age 7 4 4 14 2

Job schedule 8 6 6 4 7

Working Status 9 8 7 19 8

Total household income 10 7 9 6 6

Residence 11 13 10 5 12

Total sleep time 12 9 11 22 15

Highest education level 
completed 13 12 8 10 11

Family history of hyperten-
sion 14 17 18 12 16

Physical activity, quartiles 15 19 22 21 23

Smoking status 16 14 12 23 14

Total physical activity time 17 24 15 16 17

Depression, 18 21 21 9 24

Ethnicity 19 10 24 18 21

Sex 20 18 13 8 13

Total sitting time 21 22 23 17 22

Alcohol consumption 22 16 17 7 19

Marital status 23 15 20 24 20

Vegetable and fruit con-
sumption 24 23 19 20 18
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in a software program or simply not developed. We also did not use feature scaling approaches for continuous 
features, such as standardization or normalization, which may have an impact on the predictive performance of 
some of the algorithms. We could not evaluate our models’ performance in an external cohort, which is essen-
tial for any prediction model’s generalizability7. The current study had a limited focus. We only used a subset 
of machine learning algorithms and hence cannot comment on the performance of approaches not tested here, 
such as neural networks and support vector machines. Our findings about the relative performance of various 
prediction methods should be limited to this patient cohort and this specific prediction (i.e., hypertension ). 
Readers should not draw the conclusion that traditional statistical modeling and machine learning algorithms 
perform similarly in all scenarios and for all conditions or outcomes.

In conclusion, we developed several machine learning algorithms for predicting hypertension incidence using 
survival data. We compared machine learning algorithms’ performance with conventional Cox PH regression 
models, and a negligible difference in predictive performance was observed. Based on this study’s findings, con-
ventional regression-based models are comparable to machine learning algorithms to provide good predictive 
accuracy in a moderate dataset with a reasonable number of features.

Table 3.   The top 20 features selected by the different approaches with bold text indicates commonly selected 
features.

Random survival forest relative 
importance Statistical equivalent signature

Harrel’s C-index/Somers’ Dxy 
rank correlation

Lasso Cox coefficients/variable 
importance feature Univariate Cox p-values

Top 20 features

Systolic blood pressure Systolic blood pressure Systolic blood pressure Waist-hip ratio Systolic blood pressure

Diastolic blood pressure Body mass index Diastolic blood pressure Cardiovascular disease Age

Body mass index Cardiovascular disease Body mass index Diabetes Body mass index

Waist-hip ratio Age Age Job schedule Waist-hip ratio

Diabetes Diabetes Waist-hip ratio Residence Diastolic blood pressure

Cardiovascular disease Job schedule Job schedule Total household income Total household income

Age Total household income Working status Alcohol Consumption Job schedule

Job schedule Working status Highest education level com-
pleted Sex Working status

Working status Total sleep time Total household income Depression Cardiovascular disease

Total household income Ethnicity Residence Highest education level com-
pleted Diabetes

Residence Waist-hip ratio Total sleep time Body mass index Highest education level com-
pleted

Total sleep time Highest education level com-
pleted Smoking status Family history of hypertension Residence

Highest education level com-
pleted Residence Sex Systolic blood pressure Sex

Family history of hypertension Smoking status Diabetes Age Smoking status

Physical activity, quartiles Marital status Total physical activity time Diastolic blood pressure Total sleep time

Smoking status Alcohol consumption Cardiovascular disease Total physical activity time Family history of hypertension

Total physical activity time Family history of hypertension Alcohol consumption Total sitting time Total physical activity time

Depression Sex Family history of hypertension Ethnicity Vegetable and fruit consumption

Ethnicity Physical activity, quartiles Vegetable and fruit consumption Working status Alcohol consumption

Sex Diastolic blood pressure Marital status Vegetable and fruit consumption Marital status
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Data availability
The data that support the findings of this study are available from Alberta’s Tomorrow Project (ATP) but restric-
tions apply to the availability of these data, which were used under license for the current study, and so are not 
publicly available. Data are however available from the authors upon reasonable request and with permission of 
Alberta’s Tomorrow Project (ATP).
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