Table 1 Measured segmentation time per patient obtained by using CNN-based V-Net, ViT-based UNETR, and FS using CPU. GPU running time is shown in the ().

From: Comparative validation of AI and non-AI methods in MRI volumetry to diagnose Parkinsonian syndromes

 

CNN (s)

ViT (s)

FS (s)

Midbrain

\(8.5739\pm 2.50\;(0.5827\pm 0.17)\)

\(174.37\pm 10.81\;(7.5817\pm 0.47)\)

\(1698\pm 0.144\)

Pons

\(8.5385\pm 2.35\;(0.5803\pm 0.16)\)

\(207.05\pm 46.46\;(9.2242\pm 2.02)\)

V3

\(8.5341\pm 2.35\;(0.5800\pm 0.16)\)

\(178.25\pm 10.35\;(7.7525\pm 0.45)\)

\(14,037\pm 1.5\)

Caudate

\(8.4590\pm 2.35\;(0.5749\pm 0.16)\)

\(176.20\pm 10.35\;(7.6610\pm 0.23)\)

Putamen

\(8.5561\pm 2.50\;(0.5815\pm 0.17)\)

\(179.63\pm 10.81\;(7.8112\pm 0.47)\)

Pallidum

\(8.6032\pm 2.65\;(0.5847\pm 0.18)\)

\(186.32\pm 21.39\;(8.1019\pm 0.93)\)

Total

\({51.26\pm 2.50\;(3.48\pm 0.17)}\)

\({1101.82 \pm 22.31\;(48.14 \pm 0.97)}\)

\({15,735\pm 1.07}\)

  1. The time was calculated after the skull-stripped image was obtained. Data are shown as mean ± standard deviation. (V3, third ventricle).