Table 7 Comparative analysis with existing operators.

From: Optimizing construction company selection using einstein weighted aggregation operators for q-rung orthopair fuzzy hypersoft set

Method

\(\aleph^{\left( 1 \right)}\)

\(\aleph^{\left( 2 \right)}\)

\(\aleph^{\left( 3 \right)}\)

Ranking order

PFSEWA43

0.3287

0.2634

0.4532

\(\aleph^{\left( 3 \right)} { } > \aleph^{\left( 1 \right)} > \aleph^{\left( 2 \right)}\)

PFSEWG43

0.2924

0.2418

0.3726

\(\aleph^{\left( 3 \right)} > \aleph^{\left( 1 \right)} > \aleph^{\left( 2 \right)}\)

PFSEOWA44

0.4105

0.4156

0.4281

\(\aleph^{\left( 3 \right)} > \aleph^{\left( 2 \right)} > \aleph^{\left( 1 \right)}\)

PFSEOWG45

0.3951

0.3849

0.4083

\(\aleph^{\left( 3 \right)} > \aleph^{\left( 1 \right)} > \aleph^{\left( 2 \right)}\)

IFHSWA51

0.3894

0.4071

0.4712

\(\aleph^{\left( 3 \right)} { } > \aleph^{\left( 2 \right)} > \aleph^{\left( 1 \right)}\)

IFHSWG51

0.3123

0.4436

0.4927

\(\aleph^{\left( 3 \right)} > \aleph^{\left( 2 \right)} > \aleph^{\left( 1 \right)}\)

PFHSEWA54

0.1959

0.2426

0.2763

\(\aleph^{\left( 3 \right)} > \aleph^{\left( 2 \right)} > \aleph^{\left( 1 \right)}\)

PFHSEWG55

− 0.0264

− 0.0217

− 0.0157

\(\aleph^{\left( 3 \right)} > \aleph^{\left( 2 \right)} > \aleph^{\left( 1 \right)}\)

q-ROFSWA46

0.4194

0.4375

0.4463

\(\aleph^{\left( 3 \right)} > \aleph^{\left( 2 \right)} > \aleph^{\left( 1 \right)}\)

q-ROFSOWA46

0.2964

0.3159

0.3571

\(\aleph^{\left( 3 \right)} > \aleph^{\left( 2 \right)} > \aleph^{\left( 1 \right)}\)

q-ROFSWG72

0.3493

0.4048

0.4648

\(\aleph^{\left( 3 \right)} > \aleph^{\left( 2 \right)} > \aleph^{\left( 1 \right)}\)

q-ROFSOWG72

0.3601

0.4132

0.4676

\(\aleph^{\left( 3 \right)} > \aleph^{\left( 2 \right)} > \aleph^{\left( 1 \right)}\)

q-ROFSEWA47

0.4059

0.4567

0.5143

\(\aleph^{\left( 3 \right)} > \aleph^{\left( 2 \right)} > \aleph^{\left( 1 \right)}\)

q-ROFSEOWA47

0.4367

0.4638

0.5338

\(\aleph^{\left( 3 \right)} > \aleph^{\left( 2 \right)} > \aleph^{\left( 1 \right)}\)

q-ROFSEWG48

0.4158

0.4307

0.4942

\(\aleph^{\left( 3 \right)} > \aleph^{\left( 2 \right)} > \aleph^{\left( 1 \right)}\)

q-ROFSEOWG48

0.4251

0.4467

0.5138

\(\aleph^{\left( 3 \right)} > \aleph^{\left( 2 \right)} > \aleph^{\left( 1 \right)}\)

q-ROFHSWA59

0.0125

0.0187

0.0247

\(\aleph^{\left( 3 \right)} > \aleph^{\left( 2 \right)} > \aleph^{\left( 1 \right)}\)

q-ROFHSWG59

− 0.0263

− 0.0157

− 0.0104

\(\aleph^{\left( 3 \right)} > \aleph^{\left( 2 \right)} > \aleph^{\left( 1 \right)}\)

q-ROFHSEWA

0.0574

0.0815

0.2181

\(\aleph^{\left( 3 \right)} > \aleph^{\left( 2 \right)} > \aleph^{\left( 1 \right)}\)

q-ROFHSEWG

− 0.2070

− 0.2963

− 0.1896

\(\aleph^{\left( 3 \right)} > \aleph^{\left( 1 \right)} > \aleph^{\left( 2 \right)}\)