Table 7 Baseline results using data preprocessed following the approach proposed by Carreiro et al.12 learned with 4 classifiers: Naive Bayes (NB), Support Vector Machine (SVM), Random Forests (RF) and XGB (eXtreme Gradient Boosting) to predict the Evolution for each of the target endpoints, C4 and C5, within the considered time windows (90, 180 and 365 days), respectively.
AUC | Sensitivity | Specificity | |
---|---|---|---|
C4—need for a caregiver | |||
90 days | |||
NB | 76.85 ± 3.44 | 64.00 ± 9.05 | 72.77 ± 2.31 |
SVM | 72.58 ± 3.71 | 63.89 ± 6.38 | 68.66 ± 3.29 |
RF | 75.35 ± 4.08 | 57.16 ± 8.70 | 77.13 ± 1.78 |
XGB | 76.10 ± 3.34 | 57.37 ± 8.36 | 76.89 ± 2.06 |
180 days | |||
NB | 79.45 ± 2.06 | 64.21 ± 3.74 | 75.93 ± 1.99 |
SVM | 78.63 ± 2.56 | 72.05 ± 4.84 | 70.42 ± 2.23 |
RF | 78.89 ± 1.63 | 64.46 ± 3.70 | 76.51 ± 2.32 |
XGB | 78.61 ± 1.75 | 64.81 ± 3.50 | 76.28 ± 2.25 |
365 days | |||
NB | 77.61 ± 2.05 | 58.76 ± 4.18 | 77.33 ± 2.64 |
SVM | 77.58 ± 2.10 | 65.22 ± 2.72 | 74.74 ± 2.81 |
RF | 83.33 ± 1.57 | 75.05 ± 3.20 | 76.55 ± 2.41 |
XGB | 80.83 ± 1.43 | 73.30 ± 2.85 | 74.07 ± 2.46 |
C5—need for a wheelchair | |||
90 days | |||
NB | 80.83 ± 2.92 | 77.44 ± 8.53 | 72.16 ± 1.75 |
SVM | 79.32 ± 2.58 | 73.60 ± 6.60 | 68.66 ± 2.16 |
RF | 79.65 ± 3.23 | 64.16 ± 8.04 | 78.78 ± 2.02 |
XGB | 81.85 ± 2.75 | 68.48 ± 6.72 | 77.95 ± 1.96 |
180 days | |||
NB | 82.19 ± 1.79 | 73.14 ± 4.57 | 74.48 ± 1.60 |
SVM | 83.90 ± 1.87 | 81.80 ± 3.91 | 71.51 ± 1.76 |
RF | 81.31 ± 1.79 | 66.55 ± 4.68 | 79.53 ± 1.53 |
XGB | 82.13 ± 1.75 | 68.39 ± 4.73 | 79.56 ± 1.62 |
365 days | |||
NB | 78.53 ± 1.71 | 66.26 ± 2.98 | 74.47 ± 1.45 |
SVM | 81.13 ± 1.97 | 78.13 ± 3.93 | 69.66 ± 1.81 |
RF | 82.54 ± 1.64 | 68.46 ± 3.18 | 80.41 ± 1.63 |
XGB | 80.87 ± 1.30 | 66.43 ± 3.53 | 80.06 ± 1.79 |