Table 2 Quantitative comparisons of the Potsdam dataset with other models.

From: A deep learning method for optimizing semantic segmentation accuracy of remote sensing images based on improved UNet

Method

Per-class F1 score

Avg. F1

OA

mIOU

Impervious surface

Building

Low vegetation

Tree

Car

UNet

85.88

88.14

73.19

78.9

85.13

82.25

82.01

66.44

FCN + SE

87.84

89.54

76.2

78.94

85.47

83.6

84.09

69.47

DeepLabV3 + 

87.66

91.11

75.96

77.32

86.5

83.71

84.41

70.08

PSPNet

87.34

91

74.16

79.3

83.25

83.01

84.08

69.27

DANet

85.89

87.5

75.98

79.08

86.69

83.02

82.34

67.27

CBAM

86.98

88.94

76.14

76.94

86.42

83.08

83.22

68.44

Proposed

88.81

92.03

76.89

79.31

86.96

84.8

85.4

71.44

  1. Significant values are in bold.